Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2022, 07 июль (July)

DOI: 10.14489/td.2022.07.pp.014-025

Серьезнов А. Н., Степанова Л. Н., Кабанов С. И., Рамазанов И. С., Кузнецов А. Б., Чернова В. В.
ИСПЫТАНИЯ ОБРАЗЦОВ ИЗ УГЛЕПЛАСТИКА С УДАРНЫМИ ПОВРЕЖДЕНИЯМИ С ИСПОЛЬЗОВАНИЕМ МЕТОДА АКУСТИЧЕСКОЙ ЭМИССИИ И ТЕНЗОМЕТРИИ
(с. 14-25)

Аннотация. Исследовали образцы из углепластика Т 700, на которые были нанесены ударные повреждения, после чего их нагружали статической нагрузкой до разрушения. Регистрацию дефектов выполняли с использованием метода акустической эмиссии (АЭ) и тензометрии. В процессе нагружения образцов определяли деформацию и нагрузку, при которой осуществлялась локация сигналов АЭ. Для контроля дефектов использовали антенну, состоящую из пьезоэлектрических преобразователей акустической эмиссии (ПАЭ) и волоконно-оптических датчиков (ВОД). При изменении нагрузки от 80 до 100 кН наблюдался скачок механических напряжений в образцах от 338 до 432 МПа, зарегистрированный сертифицированной микропроцессорной быстродействующей тензометрической системой «Динамика-3». При этом средняя амплитуда сигналов АЭ значительно уменьшалась начиная с нагрузки Р = 80 кН, после чего при нагрузке Р = 110 кН она увеличивалась. У датчиков ПАЭ 3 и ВОД 2, расположенных на противоположной стороне образца, где ударные повреждения отсутствовали, эти изменения амплитуд сигналов АЭ носили менее выраженный характер.

Ключевые слова:  углепластик, статическая нагрузка, ударное повреждение, акустическая эмиссия, тензометрия, локация, пьезоэлектрический и волоконно-оптический датчики.

 

Seryeznov A. N., Stepanova L. N., Kabanov S. I., Ramazanov I. S., Kuznetsov A. B., Chernova V. V.
TESTING OF CFRP SPECIMENS WITH IMPACT DAMAGE USING THE ACOUSTIC EMISSION METHOD AND TENSOMETRY
(pp. 14-25)

Abstract. 

Samples of carbon fiber T 700 were researched. They were subjected to impact damage, after which they were loaded with a static load until failure. Registration of defects was carried out using the method of acoustic emission (AE) and tensometry. In the process of loading the samples, the deformation and load were determined, at which the AE signals were located. An antenna consisting of piezoelectric acoustic emission transducers (PAE) and fiber optic sensors (FOS) was used to monitor defects. When the load changed from 80 to 100 kN, a jump in mechanical stresses was observed in the samples from 338 to 432 MPa, registered by the certified microprocessor-based high-speed tensometic system “Dynamics-3”. In this case, the average amplitude of the AE signals significantly decreased, starting from the load P = 80 kN, after which it increased at the load P = 110 kN. For sensors PAE 3 and VOD 2, located on the opposite side of the sample, where impact damage was absent, these changes in the amplitudes of the AE signals were less
pronounced.

Keywords: carbon fiber, static load, impact damage, acoustic emission, tensometry, location, piezoelectric and fiber-optic sensors.

Рус

А. Н. Серьезнов, Л. Н. Степанова, С. И. Кабанов, И. С. Рамазанов, А. Б. Кузнецов (ФАУ «Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина», Новосибирск, Россия) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. В. Чернова (ФГБОУ ВО «Сибирский государственный университет путей сообщения», Новосибирск, Россия) 

Eng

A. N. Seryeznov, L. N. Stepanova, S. I. Kabanov, I. S. Ramazanov, A. B. Kuznetsov (FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. V. Chernova (Siberian State Transport University (SGUPS), Novosibirsk, Russia)

Рус

1. Фейгенбаум Ю. М., Миколайчук Ю. А., Метелкин Е. С., Батов Г. П. Место и роль неразрушающего контроля в системе поддержания летной годности композитных конструкций // Научный вестник ГосНИИ ГА. 2015. № 9. С. 71 – 82.
2. Ахметханов Р. С., Дубинин Е. Ф. Метод анализа акустических сигналов при диагностике композиционных материалов // Проблемы машиностроения и надежности машин. 2020. № 2. С. 106 – 112.
3. Смотрова С. А., Смотров А. В. Особенности повреждаемости авиационных конструкций из ПКМ // Результаты фундаментальных исследований в прикладных задачах авиастроения: сб. ст. М.: Наука, 2016. С. 418 – 429.
4. Чернышев С. Л., Зиченков М. Ч., Смотрова С. А. и др. Технология обнаружения малозаметных ударных повреждений силовых элементов авиационных конструкций из полимерных композиционных материалов с использованием ударочувствительных полимерных покрытий с оптическими свойствами // Конструкции из композиционных материалов. 2018. № 4. С. 48 – 53.
5. Фейгенбаум Ю. М., Дубинский С. В. Влияние случайных эксплуатационных повреждений на прочность и ресурс конструкции воздушных судов // Научный вестник МГТУ ГА. 2013. № 187. С. 83 – 91.
6. Смотрова С. А. Отработка технологии обнаружения и регистрации малозаметных ударных повреждений на конструкции летательного аппарата из полимерных композиционных материалов с помощью ударочувствительного индикаторного покрытия // Конструкции из композиционных материалов. 2021. № 2. С. 14 – 19.
7. Бочкова С. Д., Волковский С. Д., Ефимов М. Е. и др. Метод локализации воздействия в композитном материале с помощью волоконно-оптических датчиков акустической эмиссии // Приборы и техника эксперимента. 2020. № 4. С. 73 – 77.
8. Ефимов М. Е., Волков А. В., Литвинов Е. В. Метод контроля деформаций композитных конструкционных элементов с помощью волоконно-оптического датчика акустической эмиссии // Научно-технический Вестник информационных технологий, механики и оптики. 2018. Т. 18, № 2. С. 212 – 219.
9. Баутин А. А., Свирский Ю. А., Панков А. В., Воронков Р. В. Способы применения волоконно-оптических датчиков деформаций в системах мониторинга // Прикладная фотоника. 2018. Т. 5, № 4. С. 391 – 406.
10. Степанова Л. Н., Чернова В. В., Рамазанов И. С. Акустико-эмиссионный контроль раннего зарождения дефектов в образцах из углепластика при статическом и тепловом нагружении // Дефектоскопия. 2020. № 10. С. 12 – 23.
11. Батаев В. А., Степанова Л. Н., Лапердина Н. А., Чернова В. В. Акустико-эмиссионный контроль ранней стадии развития дефектов при статическом нагружении образцов из углепластика // Контроль. Диагностика. 2018. № 9. С. 14 – 21.
12. Степанова Л. Н., Чернова В. В., Милосердова М. А. Акустико-эмиссионный контроль процесса разрушения образцов и кессона крыла из углепластика от ударных нагрузок // Контроль. Диагностика. 2020. Т. 23, № 9. С. 4 – 11.
13. Серьезнов А. Н., Степанова Л. Н., Кабанов С. И. и др. Локация сигналов акустической эмиссии в образцах из дюралюминия и углепластика с использованием антенны, состоящей из волоконно-оптических датчиков и пьезопреобразователей // Контроль. Диагностика. 2021. Т. 24, № 2. С. 18 – 29.
14. Пат. 2 676 209 РФ, МПК G 01 N 29/14. Акустико-эмиссионный способ определения типа дефекта структуры образца из углепластика / Л. Н. Степанова, В. А. Батаев, Н. А. Лапердина, В. В. Чернова; опубл. 26.12.2018, Бюл. № 10. 17 с.
15. Степанова Л. Н., Чернова В. В. Анализ структурных коэффициентов сигналов акустической эмиссии при статическом нагружении образцов из углепластика с ударными повреждениями // Контроль. Диагностика. 2017. № 6. С. 34 – 41.
16. Madaras E. Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites / NASA Langley research center, scientific department of non-destructive testing of structures and materials. Gempton. 2001. VA23681.
17. Sinan Kalafat, Markus G.R. Sause. Acoustic emission source localization by artifical neural networks // Structural health monitoring. 2015. P. 633 – 647.
18. Tribikram Kundu. Acoustic source localization // Ultrasonics. 2014. V. 54. P. 25 – 38.
19. Sikdar S., Mirgl P., Bantrjee S., Ostachowicz W. Damageinduced acoustic emission source monitoring in a honeycomb sandwich composite structure // Composites. Part B. 2019. V. 158. P. 179 – 188.
20. Pappu R. P. Acoustic emission detection using optical fiber sensors for the aerospace applications. Birmingham: Astor University., 2011. 177 p.
21. Markus G. R. Sause. On use of signal features for acoustic emission souse identification in fibre-reinforced composites // Journal of Acoustic Emission. 2018. V. 35. P. 125 – 136.
22. Aljets D. Acoustic emission location in composite aircraft structures using modal analysis / Unuversity of Glamorgan, 2011. 163 p.
23. Hill E. K. Neural network burst pressure prediction in tall graphite – epoxy pressure vessels from acoustic emission data // Journal of Acoustic Emission. 2012. V. 30. P. 167 – 179.
24. Lexmann M., Bueter A., Schwarzaupt O. Structural Health Monitoring of composite aerospace structures with Acoustic Emission // Journal of Acoustic Emission. 2018. V. 35. P. 172 – 193.
25. Серьезнов А. Н., Степанова Л. Н., Кабанов С. И. и др. Тензометрия в транспортном машиностроении. Новосибирск: Наука, 2014. 272 с.

Eng

1. Feygenbaum Yu. M., Mikolaychuk Yu. A., Metelkin E. S., Batov G. P. (2015). Place and role of non-destructive testing in the airworthiness maintenance system of composite structures. Nauchniy vestnik GosNII GA, (9), pp. 71 – 82. [in Russian language]
2. Ahmethanov R. S., Dubinin E. F. (2020). Method for the analysis of acoustic signals in the diagnosis of composite materials. Problemy mashinostroeniya i nadezhnosti mashin, (2), pp. 106 – 112. [in Russian language]
3. Smotrova S. A., Smotrov A. V. (2016). Features of damage to aircraft structures made of PCM. Results of fundamental research in applied problems of aircraft engineering: collection of articles, pp. 418 – 429. Moscow: Nauka. [in Russian language]
4. Chernyshev S. L., Zichenkov M. Ch., Smotrova S. A. et al. (2018). Technology for detecting subtle impact damage to power elements of aircraft structures made of polymer composite materials using shock-sensitive polymer coatings with optical properties. Konstruktsii iz kompozitsionnyh materialov, (4), pp. 48 – 53. [in Russian language]
5. Feygenbaum Yu. M., Dubinskiy S. V. (2013). The influence of accidental operational damage on the strength and service life of aircraft structures. Nauchniy vestnik MGTU GA, 187, pp. 83 – 91. [in Russian language]
6. Smotrova S. A. (2021). Development of a technology for detecting and registering subtle impact damage on an aircraft structure made of polymer composite materials using a shock-sensitive indicator coating. Konstruktsii iz kompozitsionnyh materialov, (2), pp. 14 – 19. [in Russian language]
7. Bochkova S. D., Volkovskiy S. D., Efimov M. E. et al. (2020). Method for Localization of Impact in a Composite Material Using Fiber-Optic Acoustic Emission Sensors. Pribory i tekhnika eksperimenta, (4), pp. 73 – 77. [in Russian language]
8. Efimov M. E., Volkov A. V., Litvinov E. V. (2018). Method for Deformation Control of Composite Structural Elements Using a Fiber Optic Acoustic Emission Sensor. Nauchno-tekhnicheskiy Vestnik informatsionnyh tekhnologiy, mekhaniki i optiki, Vol. 18, (2), pp. 212 – 219. [in Russian language]
9. Bautin A. A., Svirskiy Yu. A., Pankov A. V., Voronkov R. V. (2018). Ways to use fiber optic strain gauges in monitoring systems. Prikladnaya fotonika, Vol. 5, (4), pp. 391 – 406. [in Russian language]
10. Stepanova L. N., Chernova V. V., Ramazanov I. S. (2020). Acoustic-Emission Control of the Early Initiation of Defects in CFRP Specimens under Static and Thermal Loading. Defektoskopiya, (10), pp. 12 – 23. [in Russian language]
11. Bataev V. A., Stepanova L. N., Laperdina N. A., Chernova V. V. (2018). Acoustic Emission Control of the Early Stage of Defects Development Under Static Loading of Carbon Fiber Samples. Kontrol'. Diagnostika, (8), pp. 14 – 20. [in Russian language] DOI 10.14489/td.2018.08.pp.014-020
12. Stepanova L. N., Chernova V. V., Miloserdova M. A. (2020). Acoustic Emission Control of the Process of Destruction of Carbon Fiber Samples and the Wing Box Under Shock Loads. Kontrol'. Diagnostika, Vol. 23, (9), pp. 4 – 11. [in Russian language] DOI 10.14489/td.2020.09.pp.004-011
13. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. et al. (2021). Acoustic Emission Signals Location in Duralumin and Carbon Fiber Samples by Optical Fiber and Piezoelectric Transducer Sensors Antenna. Kontrol'. Diagnostika, Vol. 24, (2), pp. 18 – 29. [in Russian language] DOI 10.14489/td.2021.02.pp.018-029
14. Stepanova L. N., Bataev V. A., Laperdina N. A., Chernova V. V. (2018). Acoustic emission method for determining the type of defect in the structure of a carbon fiber sample. Ru Patent No. 2 676 209. Russian Federation. [in Russian language]
15. Stepanova L. N., Chernova V. V. (2017). Analysis of the Structural Coefficients of Acoustic Emission Signals Under Static Loading of CFRP Specimens with Impact Damage. Kontrol'. Diagnostika, (6), pp. 34 – 41. [in Russian language] DOI 10.14489/td.2017.06.pp.034-041
16. Madaras E. (2021). Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites. NASA Langley research center, scientific department of non-destructive testing of structures and materials. Gempton.
17. Sinan Kalafat, Markus G.R. Sause. (2015). Acoustic emission source localization by artifical neural networks. Structural health monitoring, pp. 633 – 647.
18. Tribikram Kundu. (2014). Acoustic source localization. Ultrasonics, Vol. 54, pp. 25 – 38.
19. Sikdar S., Mirgl P., Bantrjee S., Ostachowicz W. (2019). Damage-induced acoustic emission source monitoring in a honeycomb sandwich composite structure. Composites. Part B, Vol. 158, pp. 179 – 188.
20. Pappu R. P. (2011). Acoustic emission detection using optical fiber sensors for the aerospace applications. Birmingham: Astor University.
21. Markus G. R. Sause. (2018). On use of signal features for acoustic emission souse identification in fibre-reinforced composites. Journal of Acoustic Emission, Vol. 35, pp. 125 – 136.
22. Aljets D. (2011). Acoustic emission location in composite aircraft structures using modal analysis. University of Glamorgan.
23. Hill E. K. (2012). Neural network burst pressure prediction in tall graphite – epoxy pressure vessels from acoustic emission data. Journal of Acoustic Emission, Vol. 30, pp. 167 – 179.
24. Lexmann M., Bueter A., Schwarzaupt O. (2018). Structural Health Monitoring of composite aerospace structures with Acoustic Emission. Journal of Acoustic Emission, Vol. 35, pp. 172 – 193.
25. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. et al. (2014). Tensometry in transport engineering. Novosibirsk: Nauka. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2022.07.pp.014-025

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.07.pp.014-025

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования