Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 11 | 2024
2022, 09 сентябрь (September)

DOI: 10.14489/td.2022.09.pp.036-045

Лозовский И. Н., Лосева Е. С., Сясько В. А.
ФИЛЬТРАЦИЯ ДАННЫХ СЕЙСМОАКУСТИЧЕСКОГО КОНТРОЛЯ СПЛОШНОСТИ СВАЙ С ИСПОЛЬЗОВАНИЕМ НЕПРЕРЫВНОГО ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ
(с. 36-45)

Аннотация. Сейсмоакустический метод контроля железобетонных свай широко применяется благодаря высокой производительности и небольшому объему работ по подготовке свай к испытаниям. При низких значениях отношения сигнал/шум традиционные методы анализа сигналов зачастую не позволяют оценить длину и сплошность испытуемых конструкций. Представлена методика частотно-временного анализа данных сейсмоакустического контроля с использованием непрерывного вейвлет-преобразования, позволяющая выделить информативные составляющие сигналов, осложненных интенсивными помехами. Приведены результаты анализа сигналов с использованием различных материнских вейвлетов, показаны преимущества применения комплексного вейвлета Морле. Для выделения полезной составляющей сигнала предложено выполнять медианное усреднение значений энергии вейвлет-коэффициентов в диапазоне частот, в пределах которого наиболее ярко выражен импульс, отвечающий возбуждению упругих волн в свае. Возможности методики проиллюстрированы на данных сейсмоакустического контроля с добавлением синтетического шума и на результатах испытаний буронабивной сваи большой длины. Применение методики позволит повысить надежность и информативность результатов интерпретации данных сейсмоакустических испытаний свай.

Ключевые слова:  сваи, буронабивные сваи, неразрушающий контроль, контроль сплошности свай, сейсмоакустический метод, непрерывное вейвлет-преобразование.

 

Lozovsky I. N., Loseva E. S., Syasko V. A.
WAVELET DENOISING FOR LOW STRAIN PILE INTEGRITY TESTING
(pp. 36-45)

Abstract. Low strain impact test is widely used to assess the structural integrity of reinforced concrete piles due to its high productivity and cost effectiveness. However, a low signal-to-noise ratio may prevent proper evaluation of pile length and integrity using the standard data analysis approaches. In this paper, we propose a technique for the time-frequency analysis of low strain test data, which allows us to separate the useful components of a signal from the unwanted ones. The technique is based on the continuous wavelet transform with the complex Morlet wavelet, which is shown to be the most suitable for the low strain test data decomposition. To filter the signal, the moving median of the square modulus of the continuous wavelet transform is calculated in the frequency band of the initial impact pulse. The capabilities of the technique are illustrated by the low strain test signals with the artificial noise and the results of a field test of a 30m long bored pile.

Keywords: piles, bored piles, drilled shafts, non-destructive testing, pile integrity testing, low strain impact integrity testing, continuous wavelet transform, wavelet denoising.

Рус

И. Н. Лозовский (Центр геоэлектромагнитных исследований – филиал Института физики Земли им. О. Ю. Шмидта РАН, Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Е. С. Лосева, В. А. Сясько (Санкт-Петербургский горный университет, Санкт-Петербург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

I. N. Lozovsky (Geoelectromagnetic Research Center, Branch of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (GEMRC IPE RAS), Troitsk, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
E. S. Loseva, V. A. Syasko (Saint Petersburg Mining University, Saint Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Fleming K., Weltman A., Randolph M., Elson K. Piling Engineering. London: Taylor & Francis, 2008. 408 p. URL: https://doi.org/10.1201/b22272
2. Amir J. M. Pile Integrity Testing: History, Present Situation and Future Agenda // Proc. of the 3rd Bolivian International Conference on Deep Foundations, Santa Cruz de la Sierra, Bolivia, April 27 – 29, 2017. Madison, 2017. P. 17 – 32.
3. Amir J. M. Integrity Testing. 2nd ed. 2020. URL: https://www.piletest.com/show.asp?id=Engineer (accessed 20 April 2022)
4. Loseva E. S., Osokin A. I., Mironov D. A., Dyakonov I. P. Specific Features of the Construction and Quality Control of Pile Foundations in Engineering and Geological Conditions of Saint Petersburg // Architecture and Engineering. 2020. V. 5, No. 2. P. 38 – 45.
5. Лозовский И. Н., Жостков Р. А., Чуркин А. А. Численное моделирование ультразвукового контроля сплошности свай // Дефектоскопия. 2020. № 1. С. 3 – 13. URL: https://doi.org/10.31857/S0130308220010017
6. Мухин А. А., Чуркин А. А., Лозовский И. Н. Ограничения области применения сейсмоакустического метода контроля сплошности бетона свай // Транспортное строительство. 2018. № 9. С. 20 – 24.
7. Мухин А. А., Лозовский И. Н., Чуркин А. А. СТО ЭГЕОС 1–1.2–001–2017. Стандарт организации. Применение неразрушающего контроля сплошности свай сейсмоакустическим методом // Геотехника. 2019. Т. 11, № 4. С. 68 – 78.
8. Addison P. S., Watson J. N. Wavelet Analysis for Low Strain Integrity Testing of Foundation Piles // Proc. of 5th Intern. Conf. on Inspection, Appraisal, Repairs, Maintenance of Buildings and Structures, Singapore, 1997. P. 15–16.
9. Watson J. N., Addison P. S., Sibbald A. The Denoising of Sonic Echo Test Data Through Wavelet Transform Reconstruction // Shock and Vibration. 1999. V. 6. P. 6. URL: https://doi.org/10.1155/1999/175750
10. Grossmann A., Morlet J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape // SIAM Journal on Mathematical Analysis. 1984. V. 15, No. 4. P. 723 – 736.
11. Wavelets and their Applications / ed. Coifman R. Boston: Jones and Barlett, 1992. 434 p.
12. Нагорнов О. В., Никитаев В. Г., Простокишин В. М. и др. Вейвлет-анализ в примерах: учеб. пособие. М.: НИЯУ МИФИ, 2010. 120 с.
13. Короновский А. А., Храмов А. Е. Непрерывный вейвлетный анализ и его приложения. М.: Физмат-лит, 2003. 176 с.
14. Ni S. H., Isenhower W. M., Huang Y. H. Continuous Wavelet Transform Technique for Low-Strain Integrity Testing of Deep Drilled Shafts // Journal of GeoEngineering. 2012. V. 7, No. 3. P. 97 − 105. URL: https://doi.org/10.6310/jog.2012.7(3).3
15. Ni S. H., Yang Y. Z., Tsai P. H., Chou W. H. Evaluation of Pile Defects Using Complex Continuous Wavelet Transform Analysis // NDT and E International. 2017. V. 87. P. 50 – 59. URL: https://doi:10.1016/j.ndteint.2017.01.007
16. Ni S. H., Yang Y. Z., Lyu C. R. Application of Wavelet Analysis for the Impulse Response of Pile // Smart Structures and Systems. 2017. V. 19, No. 5. P. 513 − 521. URL: https://doi.org/10.12989/sss.2017.19.5.513
17. Ni S. H., Li J. L., Yang Y. Z., Lai Y. Y. Applicability of complex wavelet transform to evaluate the integrity of commonly used pile types // Journal of GeoEngineering. 2019. V. 14, No. 1. P. 21 – 30. URL: https://doi: 10.6310/jog.201903_14(1).3
18. Zheng W., Zheng W., Wang S. et al. Damage Localization of Piles Based on Complex Continuous Wavelet Transform: Numerical Example and Experimental Verification // Shock and Vibration. 2020. V. 2020. P. 1 – 9. URL: https://doi: 10.1155/2020/8058640
19. Liu J. L., Lin C. X, Ye X. J. et al. An improved Algorithm for Pile Damage Localization Based on Complex Continuous Wavelet Transform // Smart Structures and Systems. 2021. V. 27, No. 3. P. 493 – 506. URL: https://doi.org/10.12989/sss.2021.27.3.493
20. ASTM D5882-16. Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations. West Conshohocken: ASTM International, 2016. URL: https://doi.org/10.1520/D5882-16
21. Loseva E., Lozovsky I., Zhostkov R. Identifying Small Defects in Cast-in-Place Piles using Low Strain Integrity Testing // Indian Geotechnical Journal. 2022. V. 52, No. 2. P. 270 – 279. URL: https://doi.org/10.1007/s40098-021-00583-y
22. Чуркин А. А., Лозовский И. Н., Жостков Р. А. Численное моделирование сейсмоакустических методов контроля качества свай // Известия HFY. Сер/ физическая. 2020. Т. 84, № 1. С. 124 – 127. URL: https://doi.org/10.31857/S0367676520010093
23. Чуркин А. А., Лозовский И. Н., Фролов В. Е. и др. Комплексное исследование качества буронабивных свай на опытной площадке с использованием методов неразрушающего контроля // Геотехника. 2018. Т. 10, № 5-6. С. 72 – 83.
24. Чуркин А. А., Капустин В. В., Лозовский И. Н., Жостков Р. А. Исследование влияния параметров системы свая–грунт на динамические атрибуты акустического сигнала с использованием численного моделирования // Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332, № 1. С. 129 – 140. URL: http://doi.org/10.18799/24131830/2021/1/3006
25. Zheng C., Kouretzis G. P., Ding X. et al. Three-Dimensional Effects in Low-Strain Integrity Testing of Piles: Analytical Solution // Canadian Geotechnical Journal. 2015. V. 53, No. 2. P. 225 – 235. URL: https://doi.org/10.1139/cgj-2015-0231
26. Yarmolenko A. S., Skobenko O. V. Application of the Theory of Wavelets for Compression and Filtration of Geoinformation // Journal of Mining Institute. 2018. V. 234, No. 6. P. 612 – 623. URL: http://dx.doi.org/10.31897/pmi.2018.6.612
27. Ermolin E. Yu., Ingerov O., Yankilevich A. A., Pokrovskaya N. N. AMT Soundings in the Dead Band Within the Chukotka Region (Russian Far East) // Journal of Mining Institute. 2019. V. 236, No. 2. P. 125 – 132. URL: https://doi.org/10.31897/pmi.2019.2.125
28. Zhukovskiy Y. L., Kovalchuk M. S., Batueva D. E., Senchilo N. D. Development of an Algorithm for Regulating the load Schedule of Educational Institutions Based on the Forecast of Electric Consumption Within the Framework of Application of the Demand Response. Sustainability. 2021. V. 13, No. 24. P. 1 – 26. URL: http://dx.doi.org/10.3390/su132413801
29. Morenov V., Leusheva E., Lavrik A. et al. Gas-Fueled Binary Energy System with Low-Boiling working fluid for enhanced power generation. Energies (Basel). 2022. V. 15, No. 7. P. 1 – 15. URL: http://dx.doi.org/10.3390/en15072551
30. Koteleva N., Valnev V., Frenkel I. Investigation of the Effectiveness of an Augmented Reality and a Dynamic Simulation System Collaboration in oil Pump Maintenance // Applied Sciences. 2021. V. 12, No. 1. P. 1 – 18. URL: https://doi.org/10.3390/app12010350
31. Bolobov V., Martynenko Y. V., Voronov V. et al. Improvement of the Liquefied Natural Gas Vapor Utilization System Using a Gas Ejector. Inventions. 2022. V. 7, No. 1. P. 1 – 10. URL: https://doi.org/10.3390/inventions7010014
32. Dvoynikov M., Budovskaya M. Development of a Hydrocarbon Completion System for Wells with Low Bottomhole Temperatures for Conditions of Oil and Gas Fields in Eastern Siberia // Journal of Mining Institute. 2022. V. 253. P. 12 – 22. URL: https://doi.org/10.31897/PMI.2022.4
33. Islamov S. R., Bondarenko A. V., Gabibov A. F., Mardashov D. V. Polymer Compositions for Well Killing Operation in Fractured Reservoirs // Advances in Raw Material Industries for Sustainable Development Goals. 1st ed. CRC Press, 2020. P. 343 – 351. URL: https://doi.org/10.1201/9781003164395-43
34. Litvinenko V., Tsvetkov P., Dvoynikov M., Buslaev G. Barriers to Implementation of Hydrogen Initiatives in the Context of Global Energy Sustainable Development // Journal of Mining Institute. 2020. V. 244. P. 428 – 438. URL: https://doi.org/10.31897/pmi.2020.4.5
35. Shammazov I. A., Sidorkin D. I., Dzhemilev E. R. Research of the Dependence of the Pipeline Ends Displacement Value when Cutting out Its Defective Section on the Elastic Stresses in the PIpe Body // IOP Conference Series: Earth and Environmental Science. 2022. V. 988, No. 2. P. 1 – 9. URL: https://doi.org/10.1088/1755-1315/988/2/022077

Eng

1. Fleming K., Weltman A., Randolph M., Elson K. (2008). Piling Engineering. London: Taylor & Francis. Available at: https://doi.org/10.1201/b22272
2. Amir J. M. (2017). Pile Integrity Testing: History, Present Situation and Future Agenda. Proceedings of the 3rd Bolivian International Conference on Deep Foundations, pp. 17 – 32. Madison.
3. Amir J. M. (2020). Integrity Testing. 2nd ed. Available at: https://www.piletest.com/show.asp?id=Engineer (Accessed: 20.04.2022)
4. Loseva E. S., Osokin A. I., Mironov D. A., Dyakonov I. P. (2020). Specific Features of the Construction and Quality Control of Pile Foundations in Engineering and Geological Conditions of Saint Petersburg. Architecture and Engineering, Vol. 5, (2), pp. 38 – 45.
5. Lozovskiy I. N., Zhostkov R. A., Churkin A. A. (2020). Numerical simulation of ultrasonic testing of pile continuity. Defektoskopiya, (1), pp. 3 – 13. Available at: https://doi.org/10.31857/S0130308220010017 [in Russian language]
6. Muhin A. A., Churkin A. A., Lozovskiy I. N. (2018). Limitations of the scope of the seismoacoustic method for monitoring the continuity of concrete piles. Transportnoe stroitel'stvo, (9), pp. 20 – 24. [in Russian language]
7. Muhin A. A., Lozovskiy I. N., Churkin A. A. (2019). Application of non-destructive testing of pile continuity by seismoacoustic method. Organization standard No. STO EGEOS 1–1.2–001–2017. Geotekhnika, Vol. 11, (4), pp. 68 – 78. [in Russian language]
8. Addison P. S., Watson J. N. (1997). Wavelet Analysis for Low Strain Integrity Testing of Foundation Piles. Proceedings of 5th International Conference on Inspection, Appraisal, Repairs, Maintenance of Buildings and Structures, pp. 15 – 16. Singapore.
9. Watson J. N., Addison P. S., Sibbald A. (1999). The Denoising of Sonic Echo Test Data Through Wavelet Transform Reconstruction. Shock and Vibration. 1999. V. 6. P. 6. URL: https://doi.org/10.1155/1999/175750
10. Grossmann A., Morlet J. (1984). Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM Journal on Mathematical Analysis, Vol. 15, (4), pp. 723 − 736.
11. Coifman R. (Ed.) (1992). Wavelets and their Applications. Boston: Jones and Barlett.
12. Nagornov O. V., Nikitaev V. G., Prostokishin V. M. et al. (2010). Wavelet analysis in examples: textbook. Moscow: NIYaU MIFI. [in Russian language]
13. Koronovskiy A. A., Hramov A. E. (2003). Continuous wavelet analysis and its applications. Moscow: Fizmatlit. [in Russian language]
14. Ni S. H., Isenhower W. M., Huang Y. H. (2012). Continuous Wavelet Transform Technique for Low-Strain Integrity Testing of Deep Drilled Shafts. Journal of GeoEngineering, Vol. 7, (3), pp. 97 − 105. Available at: https://doi.org/10.6310/jog.2012.7(3).3
15. Ni S. H., Yang Y. Z., Tsai P. H., Chou W. H. (2017). Evaluation of Pile Defects Using Complex Continuous Wavelet Transform Analysis. NDT and E International, Vol. 87, pp. 50 – 59. Available at: https://doi:10.1016/j.ndteint.2017.01.007
16. Ni S. H., Yang Y. Z., Lyu C. R. (2017). Application of Wavelet Analysis for the Impulse Response of Pile. Smart Structures and Systems, Vol. 19, (5), pp. 513 − 521. Available at: https://doi.org/10.12989/sss.2017.19.5.513
17. Ni S. H., Li J. L., Yang Y. Z., Lai Y. Y. (2019). Applicability of complex wavelet transform to evaluate the integrity of commonly used pile types. Journal of GeoEngineering, Vol. 14, (1), pp. 21 – 30. Available at: https://doi: 10.6310/jog.201903_14(1).3
18. Zheng W., Zheng W., Wang S. et al. (2020). Damage Localization of Piles Based on Complex Continuous Wavelet Transform: Numerical Example and Experimental Verification. Shock and Vibration, Vol. 2020, pp. 1 – 9. Available at: https://doi: 10.1155/2020/8058640
19. Liu J. L., Lin C. X, Ye X. J. et al. (2021). An improved Algorithm for Pile Damage Localization Based on Complex Continuous Wavelet Transform. Smart Structures and Systems, Vol. 27, (3), pp. 493 – 506. Available at: https://doi.org/10.12989/sss.2021.27.3.493
20. ASTM D5882-16. Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations. West. (2016). American Society for Testing and Materials No. ASTM D5882-16. Conshohocken: ASTM International. Available at: https://doi.org/10.1520/D5882-16
21. Loseva E., Lozovsky I., Zhostkov R. (2022). Identifying Small Defects in Cast-in-Place Piles using Low Strain Integrity Testing. Indian Geotechnical Journal, Vol. 52, (2), pp. 270 – 279. Available at: https://doi.org/10.1007/s40098-021-00583-y
22. Churkin A. A., Lozovskiy I. N., Zhostkov R. A. (2020). Numerical modeling of seismoacoustic methods for quality control of piles. Izvestiya HFY. Seriya fizicheskaya, Vol. 84, (1), pp. 124 – 127. Available at: https://doi.org/10.31857/S0367676520010093 [in Russian language]
23. Churkin A. A., Lozovskiy I. N., Frolov V. E. et al. (2018). Comprehensive study of the quality of bored piles at the experimental site using non-destructive testing methods. Geotekhnika, Vol. 10, (5-6), pp. 72 – 83. [in Russian language]
24. Churkin A. A., Kapustin V. V., Lozovskiy I. N., Zhostkov R. A. (2021). Study of the Influence of Parameters of the Pile-Soil System on the Dynamic Attributes of an Acoustic Signal Using Numerical Simulation. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, Vol. 332, (1), pp. 129 – 140. Available at: http://doi.org/10.18799/24131830/2021/1/3006 [in Russian language]
25. Zheng C., Kouretzis G. P., Ding X. et al. (2015). Three-Dimensional Effects in Low-Strain Integrity Testing of Piles: Analytical Solution. Canadian Geotechnical Journal, Vol. 53, (2), pp. 225 – 235. Available at: https://doi.org/10.1139/cgj-2015-0231
26. Yarmolenko A. S., Skobenko O. V. (2018). Application of the Theory of Wavelets for Compression and Filtration of Geoinformation. Journal of Mining Institute, Vol. 234, (6), pp. 612 – 623. Available at: http://dx.doi.org/10.31897/pmi.2018.6.612
27. Ermolin E. Yu., Ingerov O., Yankilevich A. A., Pokrovskaya N. N. (2019). AMT Soundings in the Dead Band Within the Chukotka Region (Russian Far East). Journal of Mining Institute, Vol. 236, (2), pp. 125 – 132. Available at: https://doi.org/10.31897/pmi.2019.2.125
28. Zhukovskiy Y. L., Kovalchuk M. S., Batueva D. E., Senchilo N. D. (2021). Development of an Algorithm for Regulating the load Schedule of Educational Institutions Based on the Forecast of Electric Consumption Within the Framework of Application of the Demand Response. Sustainability, Vol. 13, 24, pp. 1 – 26. Available at: http://dx.doi.org/10.3390/su132413801
29. Morenov V., Leusheva E., Lavrik A. et al. (2022). Gas-Fueled Binary Energy System with Low-Boiling working fluid for enhanced power generation. Energies, Vol. 15, (7), pp. 1 – 15. Basel. Available at: http://dx.doi.org/10.3390/en15072551
30. Koteleva N., Valnev V., Frenkel I. (2021). Investigation of the Effectiveness of an Augmented Reality and a Dynamic Simulation System Collaboration in oil Pump Maintenance. Applied Sciences, Vol. 12, (1), pp. 1 – 18. Available at: https://doi.org/10.3390/app12010350
31. Bolobov V., Martynenko Y. V., Voronov V. et al. (2022). Improvement of the Liquefied Natural Gas Vapor Utilization System Using a Gas Ejector. Inventions, Vol. 7, (1), pp. 1 – 10. Available at: https://doi.org/10.3390/inventions7010014
32. Dvoynikov M., Budovskaya M. (2022). Development of a Hydrocarbon Completion System for Wells with Low Bottomhole Temperatures for Conditions of Oil and Gas Fields in Eastern Siberia. Journal of Mining Institute, Vol. 253, pp. 12 – 22. Available at: https://doi.org/10.31897/PMI.2022.4
33. Islamov S. R., Bondarenko A. V., Gabibov A. F., Mardashov D. V. (2020). Polymer Compositions for Well Killing Operation in Fractured Reservoirs. Advances in Raw Material Industries for Sustainable Development Goals. 1st ed, pp. 343 – 351. CRC Press. Available at: https://doi.org/10.1201/9781003164395-43
34. Litvinenko V., Tsvetkov P., Dvoynikov M., Buslaev G. (2020). Barriers to Implementation of Hydrogen Initiatives in the Context of Global Energy Sustainable Development. Journal of Mining Institute, Vol. 244, pp. 428 – 438. Available at: https://doi.org/10.31897/pmi.2020.4.5
35. Shammazov I. A., Sidorkin D. I., Dzhemilev E. R. (2022). Research of the Dependence of the Pipeline Ends Displacement Value when Cutting out Its Defective Section on the Elastic Stresses in the Pipe Body. IOP Conference Series: Earth and Environmental Science, Vol. 988, (2), pp. 1 – 9. Available at: https://doi.org/10.1088/1755-1315/988/2/022077

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2022.09.pp.036-045

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.09.pp.036-045

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования