DOI: 10.14489/td.2022.11.pp.052-056
Джаббарлы Б. Р. КОНТРОЛЬ МУТНОСТИ ВОДЫ С ПОМОЩЬЮ ТУРБИДИМЕТРОВ ОТНОШЕНИЯ: МЕТОД ОПТИМАЛЬНОЙ РАСПРЕДЕЛЕННОЙ ОЧИСТКИ (c. 52-56)
Аннотация. Предложен метод контроля мутности воды с помощью турбидиметров отношения при реализации оптимальной распределенной очистки вод. Обоснована и решена проблема минимизации величины суммарного значения мутности в единицах NTU показаний, формируемых на выходах турбидиметров отношения, включенных в каждый подканал сети распределения водного потока. В подканалах вода подвергается очищению по технологии «коагуляция–флокулизация». Получено оптимальное соотношение сигналов турбидиметров отношения, при котором сумма показаний NTU подканалов достигает минимума.
Ключевые слова: турбидиметр отношения, мутность, флокулизация, распределенная очистка, оптимизация.
Jabbarli B. R. TURBIDITY CONTROL OF WATER USING RATIO TURBIDIMETERS THE METHOD OF OPTIMAL DISTRIBUTED PURIFICATION (pp. 52-56)
Abstract. A method of water turbidity control using ratio turbidimeters is proposed for the implementation of optimal distributed water purification. The problem of minimizing the total turbidity value in NTU units of readings generated at the outputs of ratio turbidimeters included in each subchannel of the water flow distribution network is substantiated and solved. In the subchannels, the water is purified using coagulation-flocculation technology. The optimal ratio of the turbidimeter signals of the ratio is obtained, at which the sum of the NTU readings of the subchannels reaches a minimum.
Keywords: turbidimeter ratio, turbidity, localization, distributed purification, optimization.
Б. Р. Джаббарлы (Азербайджанский технический университет, Баку, Азербайджан) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
B. R. Jabbarli (Azerbaijan Technical University, Baku, Azerbaijan) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Ahmad Fairuz Omar, Mohd Zubir MatJafri. Development of Optical Instrument as Turbidimeter: a Comparative // Sensor Review. 2012. V. 32, Is. 2. Р. 134 – 141. 2. Lubell C., Barry T., Brody E., Hearn G. Inexpensive Dual Beam Turbidimter // Journal of Sedimentary Petrology. 1973. V.43, No 3. Р. 898 – 903. 3. Abueejela Y. M., Guinauim A. S., Algitta A. A. Measuring Turbidity of Water Basd Photo Voltaic Cell and Laser Light // Jeeeit Transactuins. 2020. V. 1, No 1. Р. 49 – 54. 4. Sefa-Ntiri B., Mensah-Amoah P., Okoto R. J. S., Tatchie E. T. Measurement of Optical Turbidity of Dronking Water Samples, Using Nephelometric and Laser Light Techniques // American International Journal of Contemporary Scientific Research. 2014. V. 1. Р. 22 – 33. 5. Hilaire T. J., Kamta M., Kayem G. J. Infrared Turbidimeter for Nephelometric, Turbidimetric and Ratio Control and Monitoring of Water during Treatment // International Journal of Engineering Research & Technology (IJERT). 2014. V. 3, Is. 2. Р. 2599 – 2604. 6. Ahmad Fairuz Bin Omar, Mohd Zubir Bin MatJafri. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity // Sensors. 2009. V. 9. Р. 8311 – 8335. DOI: 10.3390/s91008311. 7. Papadopoulou A. A., Mouza A. A., Paras S. V., Karabelas A. J. A New Turbidity Meter for Monitoring The Quality of Water // Intern. Conference “Protection & Restoration of the Environment IV”. Sani, Halkidiki, Greece, 1 – 4 July, 1998. Sani, Halkidiki, 1998. P. 1 – 9. 8. Holliday C. P., Rasmussen T. C., Miller W. P. Establishing the Relationship between Turbidity and Total Suspended Sediment Concentration // Proceedings of the 2003 Georgia Water Resources Conference. University of Georgia, Athens. USA. April 23–24. 2003. Athens, 2003. 9. Daraigan S. G. S. The Development of Multispectral Algorithms and Sensors Setup for Total Suspended Solids Measurement: Dissertation / University Science Malaysia. Penang. Malaysia, 2006. 10. Omar A. F., MatJafri M. Z. Consistency Test on a Newly Develop Water Quality Fiber Sensor // Proceedings of The Sixth Regional IMT-GT (Indonesia–Malaysia–Thailand Growth Triangle) UNITED Conference. Penang, Malaysia, 28–30th of August 2008. Penang, 2008. P. 388 – 392. 11. Baker E. T., Tennant D. A., Feely R. A. et al. Field and Laboratory Studies on the Effect of Particle Size and Composition on Optical Backscattering Measurements in Hydrothermal Plumes // Deep-Sea Res. 2001. V. 48. P. 593 – 604. 12. Riley S. J. The Sediment Concentration-Turbidity Relation: Its Value in Manitoring at Ranger Uranium Mine, Northern Territory // Cantena. 1998. V. 32, No. 1. P. 1 – 14. 13. Baghvand A., Zand A., Mehrdadi N., Karbassi A. Optimizing Coagulation Process for Low to High Turbidity Waters Using Aluminum and Iron salts // American Journal of Environmental Sciences. 2010. V. 6, No. 5. P. 442 – 448. 14. Kavi Priya S., Shenbagalakshmi G., Revathi T. Design of Smart Sensors for Real Time Drinking Water Quality Monitoring and Contamination Detection in Water Distributed Mains // International Journal of Engineering & Technology. 2018. V. 7. P. 47 – 51. 15. Kiran Patil, Sachin Patil, Sanjay Patil, Vikas Patil. Monitoring of Turbidity, PH & Temperature of Water Based on GSM // International Journal for Research in Emerging Science and Technology. 2015. V. 2, Is. 3. P. 16 – 21. 16. Droujko J., Molnar P. Open-Source, Low-Cost, In-Situ Turbidity Sensor for River Network Monitoring // Scientific reports. 2022. V. 12, Article number 10341.
1. Ahmad Fairuz Omar, Mohd Zubir MatJafri. (2012). Development of Optical Instrument as Turbidimeter: a Comparative. Sensor Review, Vol. 32, (2), pp. 134 – 141. 2. Lubell C., Barry T., Brody E., Hearn G. (1973). Inexpensive Dual Beam Turbidimter. Journal of Sedimentary Petrology, Vol. 43, (3), pp. 898 – 903. 3. Abueejela Y. M., Guinauim A. S., Algitta A. A. (2020). Measuring Turbidity of Water Basd Photo Voltaic Cell and Laser Light. Jeeeit Transactuins, Vol. 1, (1), pp. 49 – 54. 4. Sefa-Ntiri B., Mensah-Amoah P., Okoto R. J. S., Tatchie E. T. (2014). Measurement of Optical Turbidity of Dronking Water Samples, Using Nephelometric and Laser Light Techniques. American International Journal of Contemporary Scientific Research, Vol. 1, pp 22 – 33. 5. Hilaire T. J., Kamta M., Kayem G. J. (2014). Infrared Turbidimeter for Nephelometric, Turbidimetric and Ratio Control and Monitoring of Water during Treatment. International Journal of Engineering Research & Technology (IJERT), Vol. 3, (2), pp. 2599 – 2604. 6. Ahmad Fairuz Bin Omar, Mohd Zubir Bin MatJafri. (2009). Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity. Sensors, Vol. 9, pp. 8311 – 8335. DOI: 10.3390/s91008311. 7. Papadopoulou A. A., Mouza A. A., Paras S. V., Karabelas A. J. (1998). A New Turbidity Meter for Monitoring the Quality of Water. International Conference “Protection & Restoration of the Environment IV”, pp. 1 – 9. Sani, Halkidiki. 8. Holliday C. P., Rasmussen T. C., Miller W. P. (2003). Establishing the Relationship between Turbidity and Total Suspended Sediment Concentration. Proceedings of the 2003 Georgia Water Resources Conference. Athens: University of Georgia. 9. Daraigan S. G. S. (2006). The Development of Multispectral Algorithms and Sensors Setup for Total Suspended Solids Measurement: Dissertation. Penang: University Science Malaysia. 10. Omar A. F., MatJafri M. Z. (2008). Consistency Test on a Newly Develop Water Quality Fiber Sensor. Proceedings of The Sixth Regional IMT-GT (Indonesia–Malaysia–Thailand Growth Triangle) UNITED Conference, pp. 388 – 392. Penang. 11. Baker E. T., Tennant D. A., Feely R. A. et al. (2001). Field and Laboratory Studies on the Effect of Particle Size and Composition on Optical Backscattering Measurements in Hydrothermal Plumes. Deep Sea Research, Vol. 48, pp. 593 – 604. 12. Riley S. J. (1998). The Sediment Concentration-Turbidity Relation: Its Value in Monitoring at Ranger Uranium Mine, Northern Territory. Cantena, Vol. 32, (1), pp. 1 – 14. 13. Baghvand A., Zand A., Mehrdadi N., Karbassi A. (2010). Optimizing Coagulation Process for Low to High Turbidity Waters Using Aluminum and Iron salts. American Journal of Environmental Sciences, Vol. 6, (5), pp. 442 – 448. 14. Kavi Priya S., Shenbagalakshmi G., Revathi T. (2018). Design of Smart Sensors for Real Time Drinking Water Quality Monitoring and Contamination Detection in Water Distributed Mains. International Journal of Engineering & Technology, Vol. 7, pp. 47 – 51. 15. Kiran Patil, Sachin Patil, Sanjay Patil, Vikas Patil. (2015). Monitoring of Turbidity, PH & Temperature of Water Based on GSM. International Journal for Research in Emerging Science and Technology, Vol. 2, (3), pp. 16 – 21. 16. Droujko J., Molnar P. (2022). Open-Source, Low-Cost, In-Situ Turbidity Sensor for River Network Monitoring. Scientific reports, Vol. 12, 10341.
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2022.11.pp.052-056
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2022.11.pp.052-056
and fill out the form
.
|