Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2022, 11 ноябрь (November)

DOI: 10.14489/td.2022.11.pp.011-019

Ушкова Т. О., Шпенст В. А.
АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ И ОСНОВНЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ МЕТОДОВ ИЗМЕРЕНИЯ ВЯЗКОСТИ НЕФТИ ПРИ ТРУБОПРОВОДНОМ ТРАНСПОРТИРОВАНИИ
(c. 11-19)

Аннотация. Приведены факторы, вызывающие необходимость измерения вязкости на магистральных нефтепроводах. Описаны принципы работы различных существующих вискозиметров и новейших исследований в этом направлении. Рассмотрены особенности нефтяного потока, магистральных трубопроводов и тенденции развития нефтяной промышленности. Проведен анализ методов вискозиметрии с точки зрения контроля магистральных нефтяных потоков. Представлена оценка методов, на основе которой даны рекомендации по их модернизации для контроля магистральных нефтяных потоков. Исследования показали отсутствие метода, отвечающего всем требованиям магистрального нефтяного потока и тенденциям развития нефтяной промышленности. Отмечена необходимость дальнейших исследований измерительных методов, основанных на пьезоэлементах и емкостных датчиках, и возможное их внедрение в новые нефтепроводы. По мнению авторов, наибольшим потенциалом для нефтяной промышленности обладает коренная модернизация пузырькового пневматического метода под объект управления (магистральный нефтяной поток).

Ключевые слова:  вязкость, нефть, трубопровод, измерение, вискозиметр, транспорт, поток, анализ.

 

Ushkova T. O., Shpenst V. A.
ANALYSIS OF CURRENT STATE AND MAIN TENDENCIES IN DEVELOPMENT OF METHODS FOR MEASURING OIL VISCOSITY DURING PIPELINE TRANSPORTATION
(pp. 11-19)

Abstract. There are factors that cause the necessity of viscosity measurement on the main oil pipelines. The article presents the principles of various existing viscometers and the latest research in this area. The authors consider the characteristics of oil flow, trunk pipelines and trends in the oil industry. They analyse viscometric methods from the point of view of the control of trunk oil flows. The authors evaluate the methods, on the basis of which they make recommendations for their modernisation for the control of main oil streams. The research showed the absence of a method that meets all the requirements of the main oil flow and the trends of development of the oil industry. According to the authors it is necessary to make further research of measuring methods based on piezoelectric elements and capacitive sensors and possibly implement them in new oil pipelines. Authors believe that the greatest potential for the oil industry has a radical modernization of the bubble pneumatic method to suit the specific features of the control object (main oil flow).

Keywords: iscosity, oil, pipeline, measurement, viscometer, transport, flow, analysis.

Рус

Т. О. Ушкова, В. А. Шпенст (ФГБОУ ВО «Санкт-Петербургский горный университет», Санкт-Петербург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

T. O. Ushkova, V. A. Shpenst (Saint-Petersburg Mining University, Saint-Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Nikolaev A., Zaripova N. Substantiation of Analytical Dependences for Hydraulic Calculation of High-Viscosity Oil Transportation // PMI. 2021. V. 252. P. 885 – 895.
2. Zhukovskiy Y. L. Batueva D. E., Buldysko A. D. et al. Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios // Energies. 2021. V. 14, No. 17. P. 5268.
3. Mordasov M. M., Savenkov A. P. Contactless Methods for Measuring Liquid Viscosity (Review) // Inorg Mater. 2014. V. 50, No. 15. P. 1435 – 1443.
4. Singh P., Sharma A., Puchades Y., Agarwal P. A Comprehensive Review on MEMS-Based Viscometers // Sensors and Actuators A: Physical. 2022. V. 338. P. 113456.
5. Nour M., Hussain M. A Review of the Real-Time Monitoring of Fluid-Properties in Tubular Architectures for Industrial Applications // Sensors. 2020. V. 20, No. 14. P. 3907.
6. Anderson A. M., Bruno B. A., Smith L. S. Viscosity Measurement // Handbook of Measurement in Science and Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. P. hmse031.
7. Ahuja A., Lee R., Joshi Y. M. Advances and Challenges in the High-Pressure Rheology of Complex Fluids // Advances in Colloid and Interface Science. 2021. V. 294. P. 102472.
8. Rahman M., Håkansson U., Wiklund J. In-Line Rheological Measurements of Cement Grouts: Effects of Water/Cement Ratio and Hydration // Tunnelling and Underground Space Technology. 2015. V. 45. P. 34 – 42.
9. Paglianti A., Montante G. Simultaneous Measurements of Liquid Velocity and Tracer Concentration in a Continuous Flow Stirred Tank // Chemical Engineering Science. 2020. V. 216. P. 115495.
10. Hitimana E. Fox R. O., Hill J. C., Olsen M. G. Experimental Characterization of Turbulent Mixing Performance Using Simultaneous Stereoscopic Particle Image Velocimetry and Planar Laser-Induced Fluorescence // Exp. Fluids. 2019. V. 60, No. 2. P. 28.
11. Houcine I., Vivier H., Plasari E. et al. Planar Laser Induced Fluorescence Technique for Measurements of Concentration Fields in Continuous Stirred Tank Reactors // Experiments in Fluids. 1996. V. 22, No. 2. P. 95 – 102.
12. Li G., Li Z., Gao Z. et al. Particle Image Velocimetry Experiments and Direct Numerical Simulations of Solids Suspension in Transitional Stirred Tank Flow // Chemical Engineering Science. 2018. V. 191. P. 288 – 299.
13. Åkesjö A., Vamling L., Sasic S., Olausson L. On the Measuring of Film Thickness Profiles and Local Heat Transfer Coefficients in Falling Films // Experimental Thermal and Fluid Science. 2018. V. 99. P. 287 – 296.
14. Savenkov A. P., Mordasov M. M., Sychev V. A. Contactless Pneumoelectric Fluid Viscosity Measurement Device // Meas Tech. 2020. V. 63, No. 9. P. 722 – 728.
15. Fan W., Zhang X., Du M. et al. A Comparative Study of Bubble Formation Characteristics in Non-Newtonian and High-Viscosity Newtonian Fluids by a Laser Image Technique // Journal of Dispersion Science and Technology. 2020. P. 1 – 9.
16. Muilwijk C., Van den Akker H. E. A. Experimental Investigation on the Bubble Formation from Needles with and Without Liquid Co-Flow // Chemical Engineering Science. 2019. V. 202. P. 318 – 335.
17. Zähringer K., Kováts P. Experimental Characterization of Gas–Liquid Mass Transfer in a Reaction Bubble Column Using a Neutralization Reaction // Reactive Bubbly Flows / ed. Schlüter M. et al. Cham: Springer International Publishing, 2021. V. 128. P. 309 – 328.
18. Kováts P., Thévenin D., Zähringer K. Influence of Viscosity and Surface Tension on Bubble Dynamics and Mass Transfer in a Model Bubble Column // International Journal of Multiphase Flow. 2020. V. 123. P. 103174.
19. Голосницкая М. М. Пузырьковый пневматический метод контроля вязкости жидкостей и устройства его реализации: дис. … канд. техн. наук Специальность 05.11.13 Приборы и методы контроля природной среды, веществ, материалов и изделий / Тамбовский государственный технический университет. Тамбов, 2011.
20. Suhantoro M., Yulianti I. Back Scattering Method Based-Plastic Optical Fiber Coupler Viscosity Sensors // J. Phys.: Conf. Ser. 2021. V. 1918, No. 2. P. 022014.
21. Huang J., Cegla F., Wickenden A., Coomber M. Simultaneous Measurements of Temperature and Viscosity for Viscous Fluids Using an Ultrasonic Waveguide // Sensors. 2021. V. 21, No. 16. P. 5543.
22. Nour M. A., Khan Sh. M., Qaiser N. et al. Mechanically Flexible Viscosity Sensor for Real‐Time Monitoring of Tubular Architectures for Industrial Applications // Engineering Reports. 2021. V. 3, No. 3.
23. Duan X, Yao Y., Niu M. et al. Direct Laser Writing of Functional Strain Sensors in Polyimide Tubes // ACS Appl. Polym. Mater. 2019. V. 1, No. 11. P. 2914 – 2923.
24. Bista A., Hogan S., OʼDonnell C et al. Evaluation and Validation of an Inline Coriolis flowmeter to Measure Dynamic Viscosity During Laboratory and Pilot-Scale Food Processing // Innovative Food Science & Emerging Technologies. 2019. V. 54. P. 211 – 218.
25. Beloglazov I., Morenov V., Leusheva E., Gudmestad O. T. Modeling of Heavy-Oil Flow with Regard to Their Rheological Properties // Energies. 2021. V. 14, No. 2. P. 359.
26. Zhang Y. Applications of Noncontact Atomic Force Microscopy in Petroleum Characterization: Opportunities and Challenges // Energy Fuels. 2021. V. 35, No. 18. P. 14422 – 14444.
27. Muñoz J. A. D., Ancheyta J., Castañeda L. C. Required Viscosity Values to Ensure Proper Transportation of Crude Oil by Pipeline // Energy Fuels. 2016. V. 30, No. 11. P. 8850 – 8854.
28. Bolobov V., Popov G. Methodology for Testing Pipeline Steels for Resistance to Grooving Corrosion // PMI. 2021. Vl. 252. P. 854 – 860.
29. Самоленков С. В., Кабанов О. В. Исследование способов энергосбережения при транспорте нефти // Записки Горного института [Electronic resource]. 2012. Т. 195. С. 81 – 148. URL: https://pmi.spmi.ru/index.php/pmi/article/view/6107?setLocale=ru_RU (accessed: 12.05.2022).

Eng

1. Nikolaev A., Zaripova N. (2021). Substantiation of Analytical Dependences for Hydraulic Calculation of High-Viscosity Oil Transportation. Project Management Journal, Vol. 252, pp. 885 – 895.
2. Zhukovskiy Y. L. Batueva D. E., Buldysko A. D. et al. (2021). Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios. Energies, Vol. 14, 17.
3. Mordasov M. M., Savenkov A. P. (2014). Contactless Methods for Measuring Liquid Viscosity (Review). Inorganic Materials, Vol. 50, 15, pp. 1435 – 1443.
4. Singh P., Sharma A., Puchades Y., Agarwal P. (2022). A Comprehensive Review on MEMS-based Viscometers. Sensors and Actuators A: Physical, Vol. 338, pp. 113456.
5. Nour M., Hussain M. (2020), A Review of the Real-Time Monitoring of Fluid-Properties in Tubular Architectures for Industrial Applications. Sensors, Vol. 20, 14.
6. Anderson A. M., Bruno B. A., Smith L. S. (2013). Viscosity Measurement. Handbook of Measurement in Science and Engineering. Hoboken: John Wiley & Sons, Incorporated.
7. Ahuja A., Lee R., Joshi Y. M. (2021). Advances and Challenges in the High-Pressure Rheology of Complex Fluids. Advances in Colloid and Interface Science, Vol. 294.
8. Rahman M., Håkansson U., Wiklund J. (2015). In-Line Rheological Measurements of Cement Grouts: Effects of Water/Cement Ratio and Hydration. Tunnelling and Underground Space Technology, Vol. 45, pp. 34 – 42.
9. Paglianti A., Montante G. (2020). Simultaneous Measurements of Liquid Velocity and Tracer Concentration in a Continuous Flow Stirred Tank. Chemical Engineering Science, Vol. 216.
10. Hitimana E. Fox R. O., Hill J. C., Olsen M. G. (2019). Experimental Characterization of Turbulent Mixing Performance Using Simultaneous Stereoscopic Particle Image Velocimetry and Planar Laser-Induced Fluorescence. Experiments in Fluids, Vol. 60, (2).
11. Houcine I., Vivier H., Plasari E. et al. (1996). Planar Laser Induced Fluorescence Technique for Measurements of Concentration Fields in Continuous Stirred Tank Reactors. Experiments in Fluids, Vol. 22, (2), pp. 95 – 102.
12. Li G., Li Z., Gao Z. et al. (2018). Particle Image Velocimetry Experiments and Direct Numerical Simulations of Solids Suspension in Transitional Stirred Tank Flow. Chemical Engineering Science, Vol. 191, pp. 288 – 299.
13. Åkesjö A., Vamling L., Sasic S., Olausson L. (2018). On the Measuring of Film Thickness Profiles and Local Heat Transfer Coefficients in Falling Films. Experimental Thermal and Fluid Science, Vol. 99, pp. 287 – 296.
14. Savenkov A. P., Mordasov M. M., Sychev V. A. (2020). Contactless Pneumoelectric Fluid Viscosity Measurement Device. Measurement Science and Technology, Vol. 63, (9), pp. 722 – 728.
15. Fan W., Zhang X., Du M. et al. (2020). A Comparative Study of Bubble Formation Characteristics in Non-Newtonian and High-Viscosity Newtonian Fluids by a Laser Image Technique. Journal of Dispersion Science and Technology, pp. 1 – 9.
16. Schlüter M. (Ed.), Muilwijk C., Van den Akker H. E. A. et al. (2019). Experimental Investigation on the Bubble Formation from Needles with and Without Liquid Co-Flow. Chemical Engineering Science, Vol. 202, pp. 318 – 335.
17. Zähringer K., Kováts P. (2021). Experimental Characterization of Gas–Liquid Mass Transfer in a Reaction Bubble Column Using a Neutralization Reaction. Reactive Bubbly Flows, Vol. 128, pp. 309 - 328. Cham: Springer International Publishing.
18. Kováts P., Thévenin D., Zähringer K. (2020). Influence of Viscosity and Surface Tension on Bubble Dynamics and Mass Transfer in a Model Bubble Column. International Journal of Multiphase Flow, Vol. 123.
19. Golosnitskaya M. M. (2011). Bubble pneumatic method for controlling the viscosity of liquids and devices for its implementation. Tambov: Tambovskiy gosudarstvenniy tekhnicheskiy universitet. [in Russian language]
20. Suhantoro M., Yulianti I. (2021). Back Scattering Method Based-Plastic Optical Fiber Coupler Viscosity Sensors. Journal of Physics: Conference Series, Vol. 1918, (2).
21. Huang J., Cegla F., Wickenden A., Coomber M. (2021). Simultaneous Measurements of Temperature and Viscosity for Viscous Fluids Using an Ultrasonic Waveguide. Sensors, Vol. 21, 16.
22. Nour M. A., Khan Sh. M., Qaiser N. et al. (2021). Mechanically Flexible Viscosity Sensor for Real‐Time Monitoring of Tubular Architectures for Industrial Applications. Engineering Reports, Vol. 3, (3).
23. Duan X, Yao Y., Niu M. et al. (2019). Direct Laser Writing of Functional Strain Sensors in Polyimide Tubes. ACS Applied Polymer Materials, Vol. 1, (11), pp. 2914 – 2923.
24. Bista A., Hogan S., OʼDonnell C et al. (2019). Evaluation and Validation of an Inline Coriolis flowmeter to Measure Dynamic Viscosity During Laboratory and Pilot-Scale Food Processing. Innovative Food Science & Emerging Technologies, Vol. 54, pp. 211 – 218.
25. Beloglazov I., Morenov V., Leusheva E., Gudmestad O. T. (2021). Modeling of Heavy-Oil Flow with Regard to Their Rheological Properties. Energies, Vol. 14, (2).
26. Zhang Y. (2021). Applications of Noncontact Atomic Force Microscopy in Petroleum Characterization: Opportunities and Challenges. Energy Fuels, Vol. 35, 18, pp. 14422 – 14444.
27. Muñoz J. A. D., Ancheyta J., Castañeda L. C. (2016). Required Viscosity Values to Ensure Proper Transportation of Crude Oil by Pipeline. Energy Fuels, Vol. 30, (11), pp. 8850 – 8854.
28. Bolobov V., Popov G. (2021). Methodology for Testing Pipeline Steels for Resistance to Grooving Corrosion. Project Management Journal, Vol. 252, pp. 854 – 860.
29. Samolenkov S. V., Kabanov O. V. (2012). Study of Energy Saving Methods in Oil Transportation. Zapiski Gornogo instituta, Vol. 195, pp. 81 – 148. Available at: https://pmi.spmi.ru/index.php/pmi/article/view/6107?setLocale=ru_RU (Accessed: 12.05.2022). [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2022.11.pp.011-019

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.11.pp.011-019

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования