DOI: 10.14489/td.2022.12.pp.034-038
Мороз А. В., Румянцева Д. Е., Филимонов В. Е., Александров И. К. МЕТОДИКА ОПЕРАТИВНОГО КОНТРОЛЯ СТЕПЕНИ ЗАГРЯЗНЕННОСТИ ПОДЛОЖЕК МИКРОЭЛЕКТРОНИКИ ОРГАНИЧЕСКИМИ ЗАГРЯЗНЕНИЯМИ (c. 34-38)
Аннотация. Представлена методика оперативного контроля степени загрязненности подложек микроэлектроники органическими загрязнениями по углу смачиваемости каплей жидкости контролируемой подложки. Методика заключается в формировании капли дистиллированной воды на поверхности исследуемой подложки, фотографировании капли и по полученному изображению определении относительной шероховатости и степени загрязненности подложки органическими загрязнениями. Экспериментальным путем доказана работоспособность методики на примере подложек, изготовленных из стекла, ситалла и кремния. Отклонение измерений загрязненности подложек, измеренной по предложенной методике относительно данных, полученных методом атомно-силовой микроскопии, не превышает 3 %. Методика позволяет при повышении точности измерений степени загрязненности сократить время проведения контроля, обеспечив при этом сохранность контролируемых подложек, а также сократить время использования специализированного оборудования для целей контроля степени загрязненности подложек.
Ключевые слова: загрязненность подложек микроэлектроники, угол смачиваемости, оперативный контроль, шероховатость.
Moroz A. V., Rumyantseva D. E., Filimonov V. E., Aleksandrov I. K. TECHNIQUE FOR OPERATIONAL CONTROL OF THE DEGREE OF CONTAMINATION OF MICROELECTRONICS SUBSTRATES WITH ORGANIC CONTAMINANTS (pp. 34-38)
Abstract. A technique for ope rational control of the degree of contamination of microelectronic substrates with organic impurities is presented by the wetting angle of a controlled substrate by a drop of liquid. The technique consists in forming a drop of distilled water on the surface of the substrate under study, photographing the drop and using the resulting image, determining the relative roughness and degree of contamination of the substrate with organic impurities. The operability of the technique has been experimentally proved using the example of substrates made of glass, glass-ceramic and silicon. The deviation of measurements of substrate contamination measured by the proposed method relative to the data obtained by atomic force microscopy does not exceed 3 %. The technique allows, while increasing the accuracy of measuring the degree of contamination, to reduce the time of this control, while ensuring the safety of the controlled substrates. At the same time, to reduce the time of using specialized equipment for the purpose of monitoring the degree of contamination of the substrates.
Keywords: contamination of microelectronic substrates, wettability angle, operational control, roughness.
А. В. Мороз (ФГБОУ ВО «Поволжский государственный технологический университет», Йошкар-Ола, Респ. Марий Эл, Россия) E-mail: morozandrey2405@ mail.ru Д. Е. Румянцева (АО «Марийский машиностроительный завод», Йошкар-Ола, Респ. Марий Эл, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. Е. Филимонов, И. К. Александров (ФГБОУ ВО «Поволжский государственный технологический университет», Йошкар-Ола, Респ. Марий Эл, Россия) E-mail: FilimonovVE@ volgatech.net,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. V. Moroz (Federal State Budgetary Educational Institution of Higher Education “Volga State University of Technology”, Yoshkar-Ola, Resp. Mari El, Russia) E-mail: morozandrey2405@ mail.ru D. E. Rumyantseva (Joint stock Company “Mari Machine Building Plant”, Yoshkar-Ola, Resp. Mari El, Russia)E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. E. Filimonov, I. K. Aleksandrov (Federal State Budgetary Educational Institution of Higher Education “Volga State University of Technology”, Yoshkar-Ola, Resp. Mari El, Russia) E-mail: FilimonovVE@ volgatech.net,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Филимонов В. Е., Сушенцов Н. И. Технология очистки подложек микро- и наноэлектроники: учеб. пособие / М-во образования и науки РФ, Марийск. гос. техн. ун-т. Йошкар-Ола: МарГТУ, 2011. 159 с. 2. Маскаева Л. Н., Федорова Е. А., Марков В. Ф. Технология тонких пленок и покрытий: учеб. пособие / под общ. ред. Л. Н. Маскаевой; М-во науки и высш. образования РФ, Урал. федер. ун-т. Екатеринбург: Изд-во Урал. ун-та, 2019. 236 с. 3. Шугуров А. Р., Панин А. В. Механизмы возникновения напряжений в тонких пленках и покрытиях // Журнал технической физики. 2020. Т. 90, Вып. 12. С. 1971 – 1994. 4. Трухачев А. В., Трухачева Н. С., Седнев М. В., Алеев Р. М. Метод контроля загрязнения поверхности полупроводниковой пластины по изменению шероховатости // Успехи прикладной физики. 2020. Т. 8, № 5. С. 364 – 369. 5. Миронов В. Л. Основы сканирующей зондовой микроскопии: учеб. пособие / РАН; Институт физики микроструктур. Н. Новгород, 2004. 110 с. 6. Крылова Т. Н., Бохонская И. Ф., Карапетян Г. А. Измерение прозрачных пленок на поверхности стекла эллипсометрическим и спектрофотометрическим методами // Оптика и спектроскопия. 1980. Т. 49, Вып. 4. С. 802 – 808. 7. Невлюдов И. Ш., Жарикова И. В., Перепелица И. Д., Резниченко А. Г. Анализ методов контроля шероховатости подложек для изделий электронной техники // Восточно-Европейский журнал передовых технологий. 2014. Т. 2, № 5(68). С. 25 – 29. 8. Шутов Д. А., Ситанов Д. В. Процессы микро- и нанотехнологий: лабораторный практикум. Ч. 2 / ГОУВ-ПО Иван. гос. хим.-технол. ун-т. Иваново, 2006. 135 с. 9. Бородин С. А., Волков А. В., Казанский Н. Л. Автоматизированное устройство для оценки степени чистоты подложки по динамическому состоянию капли жидкости, наносимой на ее поверхность // Компьютерная оптика. 2005. № 28. С. 69 – 75. 10. Пат. 2775163 РФ. Способ измерения загрязненности поверхности подложек микроэлектроники / А. В. Мороз, Д. Е. Румянцева; № 2021132312; заявл. 08.11.2021; опубл. 28.06.2022, Бюл. № 19. 2 с. 11. Hoorfar M., Neumann A. W. Axisymmetric Drop Shape Analysis (ADSA) for the determination of surface tension and contact angle // Journal of Adhesion. 2004. Nо. 80. P. 727 – 743. DOI: 10.1080/00218460490477684 12. Марчук И. В., Чеверда В. В., Стрижак П. А., Кабов О. А. Определение поверхностного натяжения и контактного угла смачивания по форме поверхности осесимметричных пузырей и капель // Теплофизика и аэромеханика. 2015. Т. 22, № 3. С. 311 – 317.
1. Filimonov V. E., Sushentsov N. I. (2011). Technology for cleaning substrates of micro- and nanoelectronics: textbook. Ministry of Education and Science of the Russian Federation, Mari State Technological University. Yoshkar-Ola: MarGTU. [in Russian language] 2. Maskaeva L. N. (Ed.), Fedorova E. A., Markov V. F. (2019). Technology of thin films and coatings: textbook. Ministry of Science and Higher Education of the Russian Federation. Ural Federal University. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta. [in Russian language] 3. Shugurov A. R., Panin A. V. (2020). Mechanisms of stress initiation in thin films and coatings. Zhurnal tekhnicheskoy fiziki, Vol. 90, (12), pp. 1971 – 1994. [in Russian language] 4. Truhachev A. V., Truhacheva N. S., Sednev M. V., Aleev R. M. (2020). Method for controlling contamination of the surface of a semiconductor wafer by changing the roughness. Uspekhi prikladnoy fiziki, Vol. 8, (5), pp. 364 – 369. [in Russian language] 5. Mironov V. L. (2004). Fundamentals of scanning probe microscopy: textbook. Nizhniy Novgorod: RAN; Institut fiziki mikrostruktur. [in Russian language] 6. Krylova T. N., Bohonskaya I. F., Karapetyan G. A. (1980). Measurement of transparent films on the glass surface by ellipsometric and spectrophotometric methods. Optika i spektroskopiya, Vol. 49, (4), pp. 802 – 808. [in Russian language] 7. Nevlyudov I. Sh., Zharikova I. V., Perepelitsa I. D., Reznichenko A. G. (2014). Analysis of methods for controlling the roughness of substrates for electronic products. Vostochno-Evropeyskiy zhurnal peredovyh tekhnologiy, Vol. 2, 68(5), pp. 25 – 29. [in Russian language] 8. Shutov D. A., Sitanov D. V. (2006). Processes of micro- and nanotechnologies: laboratory workshop. Part 2. Ivanovo: GOUVPO Ivanovskiy gosudarstvenniy himiko-tekhnologicheskiy universitet. [in Russian language] 9. Borodin S. A., Volkov A. V., Kazanskiy N. L. (2005). Automated device for assessing the degree of cleanliness of a substrate by the dynamic state of a liquid drop applied to its surface. Komp'yuternaya optika, 28, pp. 69 – 75. [in Russian language] 10. Moroz A. V., Rumyantseva D. E. (2022). Method for measuring surface contamination of microelectronic substrates. Ru Patent No. 2775163. Russian Federation. [in Russian language] 11. Hoorfar M., Neumann A. W. (2004). Axisymmetric Drop Shape Analysis (ADSA) for the determination of surface tension and contact angle. Journal of Adhesion, 80, pp. 727 – 743. DOI: 10.1080/00218460490477684 12. Marchuk I. V., Cheverda V. V., Strizhak P. A., Kabov O. A. (2015). Determination of surface tension and contact angle of wetting from the shape of the surface of axisymmetric bubbles and drops. Teplofizika i aeromekhanika, Vol. 22, (3), pp. 311 – 317. [in Russian language]
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2022.12.pp.034-038
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2022.12.pp.034-038
and fill out the form
.
|