Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2023, 02 февраль (February)

DOI: 10.14489/td.2023.02.pp.024-032

Ишкаев Т. М., Насыбуллин А. Р., Фархутдинов Р. В., Смирнов С. В., Самигуллин Р. Р., Козин К. В.
СВЧ-ДАТЧИК НА ОСНОВЕ ОБЪЕМНОЙ ПОЛОСКОВОЙ ЛИНИИ МЕАНДРОВОЙ ФОРМЫ ДЛЯ ДИЭЛЕКТРИЧЕСКОГО КОНТРОЛЯ ЖИДКИХ СРЕД
(с. 24-32)

Аннотация. Предлагается новый тип преобразовательных элементов для средств диэлектрического контроля, функционирующих в длинноволновой области СВЧ-диапазона, на основе объемных полосковых линий меандровой формы. Их главным отличием является повышенная чувствительность преобразования и меньшие линейные размеры в сравнении с сенсорами, построенными на основе планарных линий передачи. В качестве апробации сенсора, построенного в виде объемной полосковой структуры меандровой формы, приведены результаты по оценке степени обводненности нефти.

Ключевые слова:  полосковые линии, брэгговские СВЧ-структуры, связанные линии передачи, контроль диэлектрических параметров, векторный анализатор цепей, 3D-печать, математическое моделирование, преобразовательный элемент.

 

Ishkaev T. M., Nasybullin A. R., Farkhutdinov R. V., Smirnov S. V., Samigullin R. R., Kozin K. V.
MICROWAVE SENSOR BASED ON MEANDER-SHAPED VOLUMETRIC STRIP LINE FOR DIELECTRIC CONTROL OF LIQUID MEDIA
(pp. 24-32)

Abstract. The paper proposes a new type of transducer elements for means of dielectric control of liquid media operating in the long-wave region of the microwave range, based on meander-shaped volumetric strip lines. Their main difference is the increased conversion sensitivity and smaller linear dimensions in comparison with sensors based on planar transmission lines. The introduction describes the relevance of the problem being solved, raises the problem of the need to increase the size of the transducer elements in the frequency range under consideration to ensure satisfactory sensitivity, and determines the transition to bulk structures. In the main part of this section, a mathematical description of the elementary cells of a volumetric strip microwave structure is carried out, and a comparison of the sensitivity with microstrip lines with a dielectric coating that are equivalent in physical parameters is given. In the experimental part of the article, the proposed structure is tested as a transducer element in a experiment to assess the degree of water cut in oil. The result of the experimental study is the obtained sensitivity value of the developed sensor S = 3.142 deg/%, as well as an estimate of the error in measuring the oil water cut, which amounted to 0.3 %.

Keywords: strip lines, Bragg microwave structures, coupled transmission lines, control of dielectric parameters, vector network analyzer, 3D printing, mathematical modeling, transducer element.

Рус

Т. М. Ишкаев, А. Р. Насыбуллин, Р. В. Фархутдинов (ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева – КАИ», Казань, Россия) Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
С. В. Смирнов (ФГКОУ ВО «Казанский юридический институт МВД России», Казань, Россия; ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева – КАИ», Казань, Россия) Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Р. Р. Самигуллин, К. В. Козин (ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева – КАИ», Казань, Россия) Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

T. M. Ishkaev, A. R. Nasybullin, R. V. Farkhutdinov (Federal State Budgetary Educational Institution of Higher Education “Kazan National Research Technical University named after A. N. Tupolev – KAI”, Kazan, Russia) Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. V. Smirnov (Kazan Law Institute of the Ministry of Internal Affairs of Russia, Kazan, Russia; Federal State Budgetary Educational Institution of Higher Education “Kazan National Research Technical University named after A. N. Tupolev – KAI”, Kazan, Russia) Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
R. R. Samigullin, K. V. Kozin (Federal State Budgetary Educational Institution of Higher Education “Kazan National Research Technical University named after A. N. Tupolev – KAI”, Kazan, Russia) Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. La Gioia A., Porter E., Merunka I., et al. Open-ended coaxial probe technique for dielectric measurement of biological tissues: challenges and common practices // Diagnostics. 2018. V. 8, No. 2. P. 40.
2. Karacolak T., Cooper R., Unlu E. S., et al. Dielectric properties of porcine skin tissue and in vivo testing of implantable antennas using pigs as model animal // IEEE Antennas and Wireless Propagation Letters. 2012. V. 11. P. 1686 – 1689.
3. Juan C. G., Bronchalo E., Potelon B., et al. Concentration Measurement of Microliter – Volume Water –Glucose Solutions Using Q Factor of Microwave Sensors // IEEE Transactions on instrumentation and measurement. 2018. V. 68, No. 7. P. 2621 – 2634.
4. Bahar A. A. M., Zakaria Z., Ab. Rashid S. R., et al. Dielectric analysis of liquid solvents using microwave resonator sensor for high efficiency measurement // Microwave and Optical Technology Letters. 2017. V. 59, No. 2. P. 367 – 371.
5. Гуляев Ю. В., Никитов С. А., Усанов Д. А. и др. Определение параметров тонких полупроводниковых слоев с использованием одномерных СВЧ-фотонных кристаллов // Доклады Академии наук. 2012. Т. 443, № 5. С. 564 – 566.
6. Насыбуллин А. Р., Ишкаев Т. М., Шаронов Д. Е. Диэлектрический волновод с периодическими неоднородностями как способ измерения характеристик диэлектриков // Инженерный вестник Дона. 2018. № 4(51). URL: ivdon.ru/ru/magazine/archive/n4y2018/5277 (дата обращения: 21.04.22).
7. Усанов Д. А., Скрипаль А. В., Абрамов А. В. и др. Микрополосковые фотонные кристаллы и их использование для измерения параметров жидкостей // Журнал технической физики. 2010. Т. 80, № 8. С. 143 – 148.
8. Фархутдинов Р. В., Насыбуллин А. Р., Морозов О. Г. и др. Брэгговская СВЧ-структура в коаксиальном волноводе как датчик контроля диэлектрических параметров жидких сред // Физика волновых процессов и радиотехнические системы. 2019. Т. 22, № 4-2. С. 114 – 120.
9. Беляев Б. А., Ходенков С. А., Шабанов В. Ф. Исследование частотно-селективных устройств, построенных на основе микрополоскового двумерного фотонного кристалла // Доклады академии наук. 2016. Т. 467, № 4. С. 400 – 404.
10. Усанов Д. А., Никитов С. А., Скрипаль А. В. и др. Многопараметровые измерения эпитаксиальных полупроводниковых структур с использованием одномерных сверхвысокочастотных фотонных кристаллов // Радиотехника и электроника. 2016. Т. 61, № 1. С. 45 – 53.
11. Ишкаев, Т. М., Насыбуллин А. Р., Фархутдинов Р. В., Самигуллин Р. Р. Применение непланарных микрополосковых СВЧ-структур для контроля диэлектрических параметров жидкостей и твердых материалов // Южно-Сибирский научный вестник. 2021. № 6. С. 56 – 61.
12. Yamashita E., Mittra R. Variational Method for the Analysis of Microstrip Line // IEEE Transactions on Microwave Theory and Techniques. 1968. V. MTT-16, No. 4. P. 251 – 256.

Eng

1. La Gioia A., Porter E., Merunka I., et al. (2018). Open-ended coaxial probe technique for dielectric measurement of biological tissues: challenges and common practices. Diagnostics, Vol. 8, (2).
2. Karacolak T., Cooper R., Unlu E. S., et al. (2012). Dielectric properties of porcine skin tissue and in vivo testing of implantable antennas using pigs as model animal. IEEE Antennas and Wireless Propagation Letters, Vol. 11, pp. 1686 – 1689.
3. Juan C. G., Bronchalo E., Potelon B., et al. (2018). Concentration Measurement of Microliter – Volume Water –Glucose Solutions Using Q Factor of Microwave Sensors. IEEE Transactions on instrumentation and measurement, Vol. 68, (7), pp. 2621 – 2634.4. Bahar A. A. M., Zakaria Z., Ab. Rashid S. R., et al. (2017). Dielectric analysis of liquid solvents using microwave resonator sensor for high efficiency measurement. Microwave and Optical Technology Letters, Vol. 59, (2), pp. 367 – 371.
5. Gulyaev Yu. V., Nikitov S. A., Usanov D. A. et al. (2012). Determination of the parameters of thin semiconductor layers using one-dimensional microwave photonic crystals. Doklady Akademii nauk, Vol. 443, (5), pp. 564 – 566. [in Russian language]
6. Nasybullin A. R., Ishkaev T. M., Sharonov D. E. (2018). Dielectric waveguide with periodic inhomogeneities as a way to measure the characteristics of dielectrics. Inzhenerniy vestnik Dona, 51(4). Available at: ivdon.ru/ru/magazine/archive/n4y2018/5277 (Accessed: 21.04.22). [in Russian language]
7. Usanov D. A., Skripal' A. V., Abramov A. V. et al. (2010). Microstrip photonic crystals and their use for measuring the parameters of liquids. Zhurnal tekhnicheskoy fiziki, Vol. 80, (8), pp. 143 – 148. [in Russian language]
8. Farhutdinov R. V., Nasybullin A. R., Morozov O. G. et al. (2019). Bragg microwave structure in a coaxial waveguide as a sensor for monitoring the dielectric parameters of liquid media. Fizika volnovyh protsessov i radiotekhnicheskie sistemy, Vol. 22, (4-2), pp. 114 – 120. [in Russian language]
9. Belyaev B. A., Hodenkov S. A., Shabanov V. F. (2016). Investigation of frequency-selective devices built on the basis of a microstrip two-dimensional photonic crystal. Doklady akademii nauk, Vol. 467, (4), pp. 400 – 404. [in Russian language]
10. Usanov D. A., Nikitov S. A., Skripal' A. V. et al. (2016). Multiparameter Measurements of Epitaxial Semiconductor Structures Using One-Dimensional Microwave Photonic Crystals. Radiotekhnika i elektronika, Vol. 61, (1), pp. 45 – 53. [in Russian language]
11. Ishkaev, T. M., Nasybullin A. R., Farhutdinov R. V., Samigullin R. R. (2021). Application of non-planar microstrip microwave structures for control of dielectric parameters of liquids and solid materials. Yuzhno-Sibirskiy nauchniy vestnik, (6), pp. 56 – 61. [in Russian language]
12. Yamashita E., Mittra R. (1968). Variational Method for the Analysis of Microstrip Line. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-16, (4), pp. 251 – 256.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2023.02.pp.024-032

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.02.pp.024-032

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования