Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2023, 02 февраль (February)

DOI: 10.14489/td.2023.02.pp.004-012

Ковшов Е. Е., Кувшинников В. С.
СИМУЛЯЦИЯ ФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛА ОБЪЕКТА КОНТРОЛЯ В VR-ТРЕНАЖЕРЕ ПРОМЫШЛЕННОЙ РАДИОГРАФИИ
(с. 4-12)

Аннотация. В условиях современных тенденций в области образования, направленных на цифровизацию дидактических материалов, самого процесса обучения и контроля знаний, повышения доступности образовательных программ при удаленном обучении и смежных сервисов, изменения в том числе затрагивают сферу профессиональной подготовки технических специалистов. В ходе обучения преследуются как цели повышения готовности к действиям в условиях аварийных и чрезвычайных ситуаций, отработки общих и специальных сценариев по соблюдению техники безопасности, так и цели повышения уровня практических навыков владения техническими средствами и их использования при выполнении широкого спектра задач. Рассмотрены модели, используемые в программных VR-средствах при симуляции физических свойств материалов контролируемых изделий и носителей первичной информации. Выполнен анализ зависимости параметров ослабления материала изделия-образца от настроек аппаратуры для цифровой симуляции при обучении специалистов достижению требуемого качества контроля. Приведены примеры симуляции различных схем контроля образцов сварных стальных соединений.

Ключевые слова:  симулятор, виртуальная реальность, компьютерные технологии, дополнительное профессиональное образование, моделирование, неразрушающий контроль, цифровое производство.

 

Kovshov E. E., Kuvshinnikov V. S.
TESTING OBJECT’S MATERIAL PHYSICAL PROPERTIES SIMULATION IN THE INDUSTRIAL RADIO-GRAPHY VR ENVIRONMENT
(pp. 4-12)

Abstract. According to the current trends in education aimed within digitalization of didactic materials along with learning and knowledge control process itself. Increased accessibility of educational programs with remote learning and related services, changes also affect the field of technical specialists’ professional training. There are two main goals pursued during the training: increasing accident and emergencies readiness, and increasing the level of practical technical skills for performing a wide range of tasks. Models used in software VR-tools for simulation of the tested items’ materials physical properties and primary information carriers are presented. Dependence of the attenuation parameters of sample’s material on hardware settings for digital simulation specialists training to achieve the required quality of testing is analyzed. Simulation examples of the various testing schemes of welded steel joint samples are given.

Keywords: simulator, virtual reality, computer technology, additional professional education, simulation, nondestructive testing, digital production.

Рус

Е. Е. Ковшов, В. С. Кувшинников (АО «Научно-исследовательский и конструкторский институт монтажной технологии – Атомстрой», Москва, Россия) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

E. E. Kovshov, V. S. Kuvshinnikov (Joint-Stock Company “Research and Development Institute of Construction Technology – Atomstroy”, Moscow, Russia) Е-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Браун К. Инновации в системе управления обучением (LMS): Элементы дизайна для обучения в розничной торговле // Антология исследований по бизнесу и техническому образованию в информационную эпоху. IGI Global, 2021. С. 375 – 402.
2. Индиана Д., Мухаммад Ф., Курниавати А., Курниаван М. Электронное обучение для скучного процесса в компании аэрокосмической промышленности // 2020 IEEE. 7-я Международная конференция по промышленному инжинирингу и приложениям (ICIEA). IEEE, 2020. С. 256 – 260.
3. Кларизия Ф., Де Санто М., Ломбарди М., Сантаниелло Д. Электронное обучение и промышленность 4.0: чатбот для обучения сотрудников // Материалы 5-го Международного конгресса по информационно-коммуникационным технологиям. Сингапур: Springer, 2021. С. 445 – 453.
4. Гамильтон Д., Маккечни Дж., Эдгертон Э., Уилсон С. Иммерсивная виртуальная реальность как педагогический инструмент в образовании: систематический обзор литературы по количественным результатам обучения и экспериментальному проектированию // Журнал о компьютерах в образовании. 2021. Т. 8, № 1. С. 1 – 32.
5. Ван П., Ван Дж., Чи Х.-Л. и др. Критический обзор использования виртуальной реальности в образовании и профессиональной подготовке в области строительства // Международный журнал экологических исследований и общественного здравоохранения. 2018. Т. 15, № 6. С. 1204.
6. Бартейт С., Ланферманн Л., Бернигхаузен Т. и др. Головные устройства на основе дополненной, смешанной и виртуальной реальности для медицинского образования: систематический обзор // JMIR серьезные игры. 2021. Т. 9, № 3. С. e29080.
7. Соуза М. Дж., Роша А. Цифровое обучение: развитие навыков для цифровой трансформации организаций // Компьютерные системы будущего поколения. 2019. Т. 91. С. 327 – 334.
8. Шурыгин В., Нуреев А., Берестова А. и др. Универсальные модели и платформы в электронном обучении // Международный журнал новых технологий в обучении. 2021. Т. 16, № 9. С. 63 – 75.
9. Ковшов Е. Е., Кувшинников В. С., Казаков Д. Ф. Применение виртуальной реальности при разработке симулятора радиографии для обучения неразрушающему контролю // Контроль. Диагностика. 2021. Т. 24, № 7(277). С. 34 – 40.
10. Ковшов Е. Е., Кувшинников В. С. Виртуальная реальность как инструмент подготовки специалистов в области радиационного неразрушающего контроля // Физический журнал. Сер. конференций. 2021. С. 032007.
11. Ковшов Е. Е., Кувшинников В. С. Практические аспекты использования VR-технологий для обучения специалистов по неразрушающему контролю в промышленности // 2-я Международная конференция 2022 года по технологическому усовершенствованному обучению в высшем образовании (TELE). 2022. С. 254 – 257.
12. Ковшов Е. Е., Кувшинников В. С., Казаков Д. Ф. Формирование рентгенографического изображения объекта неразрушающего контроля в среде виртуальной реальности // Контроль. Диагностика. 2021. Т. 24, № 8. С. 14 – 22.
13. Молер Г. Радиационная химия / пер. с нем. и англ. В. Н. Попова; под ред. Б. Г. Дзантиева. М.: Госатомиздат, 1963. 294 с.
14. Блохин М. А. Физика рентгеновских лучей. 2-е изд., перераб. М.: Гостехиздат, 1957. 518 с.
15. Хараджа Ф. Н. Общий курс рентгенотехники. М.–Л.: Энергия, 1966. 568 с.
16. Козлов Е. А. Аналитический расчет спектра рентгеновского излучения микрофокусной рентгеновской трубки с анодом «тепловая труба» // Вестник РГРТУ. 2019. № 69. С. 202 – 210.
17. Браверман В. Я., Белозерцев В. С., Успенский А. Н. Экспериментальные исследования рентгеновского излучения при электронно-лучевой сварке // Сибирский аэрокосмический журнал. 2005. № 3. С. 196 – 200.
18. Графический калькулятор – GeoGebra. URL: https://www.geogebra.org/graphing (дата обращения: 01.07.2022).
19. Дрейзин В. Э., Логвинов Д. И., Гримов А. А., Сиделева Н. В. Физические основы регистрации ионизирующих излучений: учеб. пособие. Курск: Юго-Зап. гос. ун-т, 2013. 335 с.
20. Румянцев С. В., Штань А. С., Гольцев В. А. Справочник по радиационным методам неразрушающего контроля / под ред. С. В. Румянцева. М.: Энергоиздат, 1982. 240 с.
21. Национальный институт стандартов и технологий (NIST) XCOM: База данных поперечных сечений фотонов. URL: https://www.physics.nist.gov/PhysRefData/Xcom/html/xcom1.html (дата обращения: 01.07.2022).
22. Ермолов И. Н., Останин Ю. Я. Методы и средства неразрушающего контроля качества: учеб. пособие для инж.-техн. спец. вузов. М.: Высш. шк., 1988. 368 с.

Eng

1. Braun K. (2021). Learning Management System (LMS) Innovations: Design Elements for Retail Learning. An Anthology of Research on Business and Technical Education in the Information Age, pp. 375 – 402. IGI Global. [in Russian language]
2. Indiana D., Muhammad F., Kurniavati A., Kurniavan M. (2020). E-learning for a boring process in an aerospace company. 2020 IEEE. 7th International Conference on Industrial Engineering and Applications (ICIEA), pp. 256 – 260. IEEE. [in Russian language]
3. Klariziya F., De Santo M., Lombardi M., Santaniello D. (2021). E-learning and industry 4.0: chatbot for employee training. Materials of the 5th International Congress on Information and Communication Technologies, pp. 445 – 453. Singapur: Springer. [in Russian language]
4. Gamil'ton D., Makkechni Dzh., Edgerton E., Uilson S. (2021). Immersive Virtual Reality as a Pedagogical Tool in Education: A Systematic Review of the Literature on Quantitative Learning Outcomes and Experimental Design. Zhurnal o komp'yuterah v obrazovanii, Vol. 8, (1), pp. 1 – 32. [in Russian language]
5. Van P., Van Dzh., Chi H.-L. et al. (2018). A critical review of the use of virtual reality in education and training in the field of construction. Mezhdunarodniy zhurnal ekologicheskih issledovaniy i obshchestvennogo zdravoohraneniya, Vol. 15, (6). [in Russian language]
6. Barteyt S., Lanfermann L., Bernighauzen T. et al. (2021). Augmented, Mixed and Virtual Reality Head Units for Medical Education: A Systematic Review. JMIR ser'eznye igry, Vol. 9, (3). [in Russian language]
7. Souza M. Dzh., Rosha A. (2019). Digital Learning: Developing Skills for the Digital Transformation of Organizations. Komp'yuternye sistemy budushchego pokoleniya, Vol. 91, pp. 327 – 334. [in Russian language]
8. Shurygin V., Nureev A., Berestova A. et al. (2021). Universal models and platforms in elearning. Mezhdunarodniy zhurnal novyh tekhnologiy v obuchenii, Vol. 16, (9), pp. 63 – 75. [in Russian language]
9. Kovshov E. E., Kuvshinnikov V. S., Kazakov D. F. (2021). Virtual reality usage in the radiography simulator development for non-destructive testing personnel training. Kontrol'. Diagnostika, Vol. 24, 277(7), pp. 34 – 40. [in Russian language] DOI: 10.14489/td.2021.07.pp.034-040
10. Kovshov E. E., Kuvshinnikov V. S. (2021). Virtual Reality as a Tool for Training Specialists in the Field of Radiation Non-Destructive Testing. Fizicheskiy zhurnal. Seriya konferentsiy. [in Russian language]
11. Kovshov E. E., Kuvshinnikov V. S. (2022). Practical aspects of using VR technologies for training specialists in non-destructive testing in industry. 2nd International Conference 2022 on Technological Enhanced Learning in Higher Education (TELE), pp. 254 – 257. [in Russian language]
12. Kovshov E. E., Kuvshinnikov V. S., Kazakov D. F. (2021). Radiographic image of a non-destructive testing object generation in a virtual reality environment. Kontrol'. Diagnostika, Vol. 24, (8), pp. 14 – 22. [in Russian anguage] DOI: 10.14489/td.2021.08.pp.014-022
13. Moler G. (1963). Radiation chemistry. Moscow: Gosatomizdat. [in Russian language]
14. Blohin M. A. (1957). Physics of X-rays. 2nd ed. Moscow: Gostekhizdat. [in Russian language]
15. Haradzha F. N. (1966). General course of radiology. Moscow–Leningrad: Energiya. [in Russian language]
16. Kozlov E.A. (2019). Analytical calculation of the X-ray spectrum of a microfocus X-ray tube with a "heat pipe" anode. Vestnik RGRTU, 69, pp. 202 – 210. [in Russian language]
17. Braverman V. Ya., Belozertsev V. S., Uspenskiy A. N. (2005). Experimental studies of X-ray radiation in electron-beam welding. Sibirskiy aerokosmicheskiy zhurnal, (3), pp. 196 – 200. [in Russian language]
18. Graphing Calculator – GeoGebra. Available at: https://www.geogebra.org/graphing (Accessed: 01.07.2022). [in Russian language]
19. Dreyzin V. E., Logvinov D. I., Grimov A. A., Sideleva N. V. (2013). Physical bases of registration of ionizing radiation: textbook. Kursk: Yugo-Zapadniy gosudarstvenniy universitet. [in Russian language]
20. Rumyantsev S. V. (Ed.), Shtan' A. S., Gol'tsev V. A. (1982). Handbook of Radiation Methods of Non-Destructive Testing. Moscow: Energoizdat. [in Russian language]
21. National Institute of Standards and Technology (NIST) XCOM: Photon Cross Section Database. Available at: https://www.physics.nist.gov/PhysRefData/Xcom/html/xcom1.html (Accessed: 01.07.2022). [in Russian language]
22. Ermolov I. N., Ostanin Yu. Ya. (1988). Methods and means of non-destructive quality control: textbook for special engineering universities. Moscow: Vysshaya shkola. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2023.02.pp.004-012

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.02.pp.004-012

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования