Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2023, 01 January

DOI: 10.14489/td.2023.01.pp.004-013

Makhov V. E., Shirobokov V. V., Emelyanov A. V., Mihailov A. A., Potapov A. I.
OPTICAL-ELECTRONIC SYSTEM OF HIGH SPATIAL RESOLUTION WHEN OBSERVING REMOTE OBJECTS
(pp. 4-13)

Abstract. Schematic solutions of an optoelectronic system for obtaining high spatial resolution when observing remote objects are studied, which allow obtaining high resolution of objects in the volume of the observed space, providing high accuracy in determining the coordinates and geometric features of objects in three-dimensional space. A hybrid system is considered for simultaneous registration of the entire set of rays from observed objects in a full solid angle by a high-resolution optical system together with a system for registering sets of different sets of ray directions from objects in the same observed space, which makes it possible to form a set of narrow layers of the observed space in range. To further improve the accuracy of obtaining coordinate and non-coordinate information of the observed objects, the images of narrow layers of space are expanded to the resolution of the first optical registration system by weighted substitution of the detail filters of the discrete wavelet transform. Integration in different digital information ranges is achieved by decomposing the image of the first digital source and each of the set of images of the second digital source into low-frequency and high-frequency components, separate processing of image components based on the principle of weighted summation for each pixel, and the formation of the resulting image. Computational experiments have been carried out showing the effectiveness of the proposed circuit solutions in determining the parameters of objects of interest.

Keywords: high spatial resolution, optoelectronic system, image multiplexing, continuous wavelet transform, direct discrete wavelet transform, inverse discrete wavelet transform.

V. E. Makhov, V. V. Shirobokov, A. V. Emelyanov, A. A. Mihailov (Mozhaisky Military Space Academy, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. I. Potapov (Saint-Petersburg Mining University, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Gruzman I. S., Kirichuk V. S., Kosyh V. P. et al. (2000). Digital image processing in information systems: textbook. Novosibirsk: Izdatel'stvo NGTU. [in Russian language]
2. Sayyedbarzani S. A., Emam S. M. (2020). Evaluation of the Quantization Error in Convergence Stereo Cameras. Journal of Optical Technology, Vol. 87, (8), pp. 495 – 500.
3. Karami M., Mousavinia A., Ehsanian M. (2012). A General Solution for Iso-Disparity Layers and Correspondence Field Model for Stereo Systems. Journal of Latex Class Files, Vol. 11, (4), pp. 1 – 18.
4. Kučera J. (2014). Computational Photography of Light-Field Camera and Application to Panoramic Photography: Master Thesis. Department of Software and Computer Science Education; Supervisor of the Master Thesis: Ing. F. Šroubek, Ph.D. Study Programme: Computer Science, Software Systems Specialization: Computer Graphics. Prague.
5. Georgiev T. G. (2010). Plenoptic Camera. US Patent No. US 20100020187 A1.
6. Boncyk W. C., Cohen R. H. (2014). Light Field Image Capture Device and Image Sensor. US Patent No. US 2014/00782 A1.
7. Hiramoto M., Ishii Ya., Monobe Yu. (2014). Light Field Image Capture Device and Image Sensor. US Patent No. 20140078259.
8. Makhov V. E., Petrushenko V. M., Shirobokov V. V. (2021). Possibilities of optical location by means of light field registration. Trudy voenno-kosmicheskoy akademii imeni A. F. Mozhayskogo, S680, pp. 162 – 171. [in Russian language]
9. Averin D. S., Markov E. M. (2018). Development of the structure of the neural network to increase the resolution of the image. Information technologies in science, industry and education: Proceedings of the regional scientific and technical conference, pp. 107 – 113. Izhevsk: Izhevskiy gosudarstvenniy tekhnicheskiy universitet im. M. T. Kalashnikova. [in Russian language]
10. Makhov V. E., Potapov A. I., Shaldaev S. E. (2017). Control of the image function optoelectronic system conversion method in image contrast. Kontrol'. Diagnostika, (7), pp. 12 – 24. [in Russian language] DOI: 10.14489/td.2017.07.pp.012-024
11. Makhov V. E., Potapov A. I., Zakutaev A. A. (2018). Principles of operation of digital light field cameras with an array of microlenses. Komponenty i tekhnologii, 226(1), pp. 66 – 72. [in Russian language]
12. Makhov V. E., Potapov A. I. (2018). Selection of information fields forms and defects of the surface by the method of registration light field. Kontrol'. Diagnostika, (3), pp. 28 – 38. [in Russian language] DOI: 10.14489/td.2018.03.pp.028-038
13. Borisova I. V. (2020). Application of wavelet transform for fusion of multispectral images. Komp'yuternaya optika, Vol. 44, (2), pp. 259 – 265. [in Russian language]
14. Travina E. I., Fadeev I. N. (2008). Method for complexing digital multispectral grayscale images. Ru Patent No. RU 2342701 C1. [in Russian language]
15. Dobeshi I. (2001). Ten lectures on wavelets. Izhevsk: NITs «Regulyarnaya i haoticheskaya dinamika». [in Russian language]
16. Koziratskiy A. A., Mamadzhanyan E. A., Shmarov A. N. (2018). Efficiency of detection of low-observable objects by multisensor reconnaissance systems. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Tekhnika i tekhnologii, Vol. 11, (1), pp. 37 – 42. [in Russian language]
17. Fernandesa F. C. A., Selesnick I., van Spaen-donckc R. L. C., Burrus Ch. S. (2003). Complex Wavelet Transforms with Allpass Filters. Signal Processing, Vol. 83, (8), pp. 1689 – 1706.
18. Ismanov Yu. H., Tynyshova T. D., Abdulaev A. A. (2020). Simulation of an optical system operating under incoherent illumination. Mezhdunarodniy zhurnal prikladnyh i fundamental'nyh issledovaniy, (3), pp. 98 – 102. [in Russian language]
19. Makhov V. E., Repin O. S., Potapov A. I. (2014). Research of algorithms automated calibration optoelectronic measuring systems with matrix photo detectors. Kontrol'. Diagnostika, (8), pp. 67 – 74. [in Russian language] DOI: 10.14489/td.2014.08.pp.067-074
20. Bok Y., Jeon H.-G., Kweon I. S. (2017). Geometric Calibration of Micro-Lensbased Light Field Cameras Using Line Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, (2), pp. 287 – 300.

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.01.pp.004-013

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования