DOI: 10.14489/td.2023.03.pp.040-049
Стрижак В. А. СТЕНД ДЛЯ ОПРЕДЕЛЕНИЯ ЗАВИСИМОСТИ СКОРОСТИ СТЕРЖНЕВОЙ ВОЛНЫ ОТ ТЕМПЕРАТУРЫ В МЕТАЛЛИЧЕСКИХ ПРУТКАХ (c. 40-49)
Аннотация. Анализ изменения скорости распространения акустической волны является эффективным способом структуроскопии различных материалов. При этом необходимы технические средства, реализующие ее точный расчет. Мешающим фактором для точного измерения скорости является зависимость скорости акустической волны от температуры объекта. Представлен стенд для измерения скорости стержневой волны в протяженном объекте длиной 1 м и диаметром до 8 мм с разрешающей способностью в 0,14 м/с. Стенд содержит нагревательную камеру, позволяющую в диапазоне температур 20…60 ℃ нагревать образцы с непрерывным измерением скорости стержневой волны. Высокая разрешающая способность измерения скорости достигается за счет прозвучивания всего тела образца и расчета временного интервала по нескольким отражениям. Уточнение временного интервала реализовано через передискретизацию частоты в кратно бо́льшую сторону с последующим корреляционным сравнением донных импульсов между собой. При получении результатов проводится учет удлинения образца от темературы и влияния дисперсии скорости, вызванной изменением частоты регистрируемых сигналов. Приведены результаты измерения скорости стержневой волны для сталей 60С2, 12Х1МФ и 12Х18Н10Т. Учет изменения частоты регистрируемых сигналов основывается на расчете центра масс в частотном спектре первого и второго донных импульсов. Поправка по скорости рассчитана на основании дисперсионных кривых в соответствии с маркой стали. На примере стали 60С2 приведен учет влияния дисперсии скорости стержневой волны при нагревании с 16 до 60 ℃. Зарегистрировано изменение центра тяжести спектра с 24 до 28 кГц, что соответствует поправке –0,7 м/с.
Ключевые слова: акустический волноводный метод, температурная зависимость скорости, дисперсия скорости.
Strizhak V. A. STAND FOR DETERMINING THE DEPENDENCE OF THE ROD WAVE VELOCITY ON THE TEMPERATURE IN METAL BARS (pp. 40-49)
Abstract. Analysis of changes in the propagation velocity of an acoustic wave is an effective method of structroscopy of various materials. At the same time, technical means are needed to implement its exact calculation. The interfering factor for accurate velocity measurement is the dependence of the acoustic wave velocity on the temperature of the object. The article presents a stand for measuring the rod wave velocity in an extended object with a length of 1 m and a diameter of up to 8 mm with a resolution of 0.14 m/s. The stand contains a heating chamber that allows heating samples in the temperature range of 20…60 ℃ with continuous measurement of the rod wave velocity. The high resolution of the velocity measurement is achieved by sounding the entire body of the sample and calculating the time interval by several reflections. The refinement of the time interval is implemented through frequency oversampling in a multiple greater direction, followed by a correlation comparison of the bottom pulses with each other. When the results are obtained, the sample temperature elongation and the velocity dispersion caused by a change in the recorded signals frequency are taken into account. The results of measuring the rod wave velocity for 60C2, 12X1MF and 12X18N10T steels are presented. Accounting for changes in the recorded signals frequency is based on the calculation of the center of mass in the frequency spectrum of the first and second bottom pulses. The velocity correction is calculated on the basis of dispersion curves in accordance with the steel grade. On the example of steel 60C2, the influence of dispersion of rod wave velocity when heated from 16 to 60 ℃ is taken into account. A change in the center of gravity of the spectrum from 24 to 28 kHz was recorded, which corresponds to a correction of –0.7 m/s.
Keywords: acoustic guided wave method, temperature dependence of velocity, velocity dispersion.
В. А. Стрижак (ИжГТУ имени М.Т. Калашникова, Ижевск, Удмуртская Республика, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. A. Strizhak (Kalashnikov Izhevsk State Technical University Izhevsk, Udmurt Republic, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Степанова Л. Н., Курбатов А. Н., Кабанов С. И. и др. Определение напряжения сжатия в рельсе с использованием эффекта акустоупругости и тензометрии // Контроль. Диагностика. 2021. Т. 24, № 7(277). С. 14 – 23. DOI: 10.14489/td.2021.07.pp.014-023 2. Муравьев В. В., Стрижак В. А., Пряхин А. В. Исследование внутренних напряжений в металлоконструкциях методом акустоупругости // Заводская лаборатория. Диагностика материалов. 2016. Т. 82, № 12. С. 52 – 57. 3. Булдакова И. В., Волкова Л. В., Муравьев В. В. Распределение напряжений в образцах труб магистральных газопроводов со сварным соединением // Интеллектуальные системы в производстве. 2020. Т. 18, № 1. С. 4 – 8. DOI: 10.22213/2410-9304-2020-1-4-8. EDN CFCQPJ. 4. Муравьева О. В., Муравьев В. В., Башарова А. Ф. и др. Влияние термической обработки и структурного состояния стали 40Х пруткового сортамента на скорость ультразвуковых волн и коэффициент Пуассона // Сталь. 2020. № 8. С. 63 – 68. EDN MKTWDN. 5. Муравьев В. В., Муравьева О. В., Будрин А. Ю. и др. Акустическая структуроскопия стальных образцов, нагруженных изгибом с вращением при испытаниях на усталость // Вестник ИжГТУ имени М.Т. Калашникова. 2019. Т. 22, № 1. С. 37 – 44. DOI: 10.22213/2413-1172-2019-1-37-44. EDN LQZVLQ. 6. Муравьев В. В., Злобин Д. В., Земсков Т. И. и др. Реализация импульсного метода определения скорости ультразвука с высокой точностью // Интеллектуальные системы в производстве. 2021. Т. 19, № 2. С. 13 – 19. DOI: 10.22213/2410-9304-2021-2-13-19. EDN TIIOPS. 7. Волкова Л. В., Муравьева О. В., Муравьев В. В., Булдакова И. В. Прибор и методики измерения акустической анизотропии и остаточных напряжений металла магистральных газопроводов // Приборы и методы измерений. 2019. Т. 10, № 1. С. 42 – 52. DOI: 10.21122/2220-9506-2019-10-1-42-52. EDN ZAKPZR. 8. Муравьев В. В., Якимов А. В., Волкова Л. В., Платунов А. В. Исследование двухосного напряженного состояния в рельсах Р65 методом акустоупругости // Интеллектуальные системы в производстве. 2019. Т. 17, № 1. С. 19 – 25. DOI: 10.22213/2410-9304-2019-1-19-25. EDN ZAWTZB. 9. Муравьев В. В., Злобин Д. В., Леньков С. В., Зверев Н. Н. Прибор для измерений скорости акустических волн в металлах и сплавах // Приборы и техника эксперимента. 2016. № 3. С. 142 – 146. DOI: 10.7868/S0032816216020245. EDN VYLZNF. 10. Рощупкин В. В., Ляховицкий М. М., Покрасин М. А. и др. Экспериментальное исследование акустических свойств и микротвердости стали 45 // Перспективные материалы. 2018. № 3. С. 72 – 78. DOI: 10.30791/1028-978X-2018-3-72-78. EDN YSINNW. 11. Чуприн А. В., Чуприн В. А., Застава А. П., Шарин П. А. Нормирование акустических характеристик мер СО-2, СО-3 для ультразвукового контроля по ГОСТ Р 55724–2013 // Контроль. Диагностика. 2016. № 11. С. 4 – 8. DOI: 10.14489/td.2016.11.pp.004-008. EDN XAAJBL. 12. Никитина Н. Е., Камышев А. В., Казачек С. В. Учет температурного фактора при ультразвуковом контроле напряженного состояния трубопроводов // Дефектоскопия. 2012. № 5. С. 20 – 25. EDN OZGPJZ. 13. Рощупкин В. В., Ляховицкий М. М., Покрасин М. А., Минина Н. А. Экспериментальное исследование акустических свойств стали 04Х19Н9 // Теплофизика высоких температур. 2017. Т. 55, № 1. С. 143 – 145. DOI: 10.7868/S0040364417010197. EDN YIABAL. 14. Рощупкин В. В., Ляховицкий М. М., Покрасин М. А. и др. Экспериментальное исследование акустических свойств и микротвердости стали 09Г2С // Теплофизика высоких температур. 2017. Т. 55, № 6. С. 778 – 781. DOI: 10.7868/S0040364417060138. EDN XHDQQS. 15. Рощупкин В. В., Ляховицкий М. М., Покрасин М. А. и др. Акустические свойства и микротвердость стали 30ХГСА // Физика и химия обработки материалов. 2017. № 1. С. 77 – 82. EDN XXNOKB. 16. Степанова Л. Н., Курбатов А. Н., Тенитилов Е. С. Исследование продольных напряжений в рельсах с использованием эффекта акустоупругости на действующем участке железнодорожного пути // Контроль. Диагностика. 2019. № 2. С. 14 – 21. DOI: 10.14489/td.2019.02.pp.014-021. EDN MBCXPI. 17. Бабкин С. Э. Определение скорости основных типов акустических волн в металлах приставным датчиком // Дефектоскопия. 2020. № 4. С. 32 – 39. DOI: 10.31857/S0130308220040041. EDN ZCDEMQ. 18. Lo Savio F., Bonfanti M. A novel device for measuring the ultrasonic wave velocity and the thickness of hyperelastic materials under quasistatic deformations // Polymer Testing. 2019. V. 74. P. 235 – 244. DOI: 10.1016/j.polymertesting.2019.01.005. EDN NOTQPO. 19. Серебренников А. В. Способ определения локальных внутренних напряжений в конструкционных материалах // Горный информационно-аналитический бюллетень (науч.-техн. журн.). 2014. № S. С. 102 – 109. EDN RWTSJJ. 20. Шкелев Е. И., Ширкаев А. В. Акустический измеритель временной задержки // Приборы и техника эксперимента. 2018. № 4. С. 25 – 30. DOI: 10.1134/S0032816218040298. EDN UWEDUS. 21. Mihaljević M., Markučič D., Runje B., Keran Z. Measurement uncertainty evaluation of ultrasonic wall thickness measurement // Measurement. 2019. V. 137. P. 179 – 188. DOI: 10.1016/j.measurement.2019.01.027. EDN TDXZUQ. 22. Хлыбов А. А., Кабалдин Ю. Г., Аносов М. С., Рябов Д. А. Влияние длительной эксплуатации на физикомеханические свойства и показатели хладостойкости трубной стали 10Г2 // Вестник ИжГТУ имени М. Т. Калашникова. 2021. Т. 24, № 1. С. 38 – 44. DOI: 10.22213/2413-1172-2021-1-38-44 23. Хлыбов А. А., Углов А. Л., Рябов Д. А. Об особенностях использования явления акустоупругости при контроле напряженного состояния анизотропного материала технических объектов при отрицательных температурах // Дефектоскопия. 2021. № 1. С. 23 – 32. DOI: 10.31857/S0130308221010036. EDN TTPVOZ. 24. Муравьева О. В., Муравьев В. В., Стрижак В. А. и др. Акустический волноводный контроль линейнопротяженных объектов. Новосибирск: Изд-во СО РАН, 2017. 234 с. 25. Муравьева О. В., Злобин Д. В. Акустический тракт метода многократных отражений при дефектоскопии линейнопротяженных объектов // Дефектоскопия. 2013. № 2. С. 43 – 51. 26. Муравьева О. В., Стрижак В. А., Злобин Д. В. и др. Акустический волноводный контроль элементов глубиннонасосного оборудования // Нефтяное хозяйство. 2016. № 9. С. 110 – 115. 27. Муравьев В. В., Стрижак В. А., Хасанов Р. Р. Особенности программного обеспечения аппаратного комплекса для акустической тензометрии и структуроскопии металлоизделий // Интеллектуальные системы в производстве. 2016. № 2(29). С. 71 – 75. EDN WAXWNJ. 28. Стрижак В. А., Хасанов Р. Р., Пряхин А. В. Особенности возбуждения электромагнитно-акустического преобразователя при волноводном методе контроля // Вестник ИжГТУ имени М.Т. Калашникова. 2018. Т. 21, № 2. С. 159 – 166. DOI: 10.22213/2413-1172-2018-2-159-166. EDN XPTZXN. 29. Злобин Д. В., Волкова Л. В. Влияние динамического подмагничивания на эффективность электромагнитно-акустического преобразования при волноводном контроле прутков // Приборы и методы измерений. 2017. Т. 8, № 3. С. 236 – 245. DOI: 10.21122/2220-9506-2017-8-3-236-245. EDN ZFCJWB. 30. Стрижак В. А., Пряхин А. В., Обухов С. А., Ефремов А. Б. Информационно-измерительная система возбуждения, приема, регистрации и обработки сигналов электромагнитно-акустических преобразователей // Интеллектуальные системы в производстве. 2011. № 1(17). С. 243 – 250. EDN NXVFTN. 31. Шелудяк Ю. Е., Кашпоров Л. Я., Малинин Л. А., Цаклов В. Н. Теплофизические свойства компонентов горючих систем: справочник / под общ. ред. Н. А. Силина. М.: НПО «Информ ТЭИ», 1992. 184 с. 32. Новицкий Л. А., Кожевников И. Г. Теплофизические свойства материалов при низких температурах: справочник. М.: Машиностроение, 1975. 216 с. 33. Марочник сталей и сплавов. / Ю. Г. Драгунов, А. С. Зубченко, Ю. В. Каширский и др.; под общ. ред. Ю. Г. Драгунова и А. С. Зубченко. 4-е изд., перераб. и доп. М.: Машиностроение, 2015. 1216 с. 34. Рощупкин В. В., Ляховицкий М. М., Покрасин М. А., Минина Н. А. Исследование акустических свойств стали 1Х18Н10Т // Теплофизика высоких температур. 2016. Т. 54, № 3. С. 479 – 481. DOI: 10.7868/S0040364416030170. EDN VYLZXP. 35. Новиков И. И., Рощупкин В. В., Кольцов А. Г. и др. Акустические и акустико-эмиссионные свойства ферритно-мартенситных хромистых сталей // Физика и химия обработки материалов. 2012. № 2. С. 87 – 91. EDN OWTYAF.
1. Stepanova L. N., Kurbatov A. N., Kabanov S. I. et al. (2021). Determination of compression stress in the rail using the effect of acoustoelasticity and strain measurement. Kontrol'. Diagnostika, Vol. 24 277(7), pp. 14 – 23. [in Russian language] DOI: 10.14489/td.2021.07.pp.014-023 2. Murav'ev V. V., Strizhak V. A., Pryahin A. V. (2016). Investigation of Internal Stresses in Steel Structures by Acoustoelasticity. Zavodskaya laboratoriya. Diagnostika materialov, Vol. 82 (12), pp. 52 – 57. [in Russian language] 3. Buldakova I. V., Volkova L. V., Murav'ev V. V. (2020). Stress distribution in samples of pipes of main gas pipelines with welded joints. Intellektual'nye sistemy v proizvodstve, Vol. 18 (1), pp. 4 – 8. [in Russian language] DOI: 10.22213/2410-9304-2020-1-4-8. EDN CFCQPJ. 4. Murav'eva O. V., Murav'ev V. V., Basharova A. F. et al. (2020). Influence of heat treatment and structural state of 40Kh bar steel on ultrasonic wave velocity and Poisson's coefficient. Stal', (8), pp. 63 – 68. [in Russian language] EDN MKTWDN. 5. Murav'ev V. V., Murav'eva O. V., Budrin A. Yu. et al. (2019). Acoustic StructureScopy of Steel Specimens Loaded by Bending with Rotation in Fatigue Testing. Vestnik IzhGTU imeni M.T. Kalashnikova, Vol. 22 (1), pp. 37 – 44. [in Russian lamguage] DOI: 10.22213/2413-1172-2019-1-37-44. EDN LQZVLQ. 6. Murav'ev V. V., Zlobin D. V., Zemskov T. I. et al. (2021). Implementation of a pulse method for determining the velocity of ultrasound with high accuracy. Intellektual'nye sistemy v proizvodstve, Vol. 19 (2), pp. 13 – 19. [in Russian language] DOI: 10.22213/2410-9304-2021-2-13-19. EDN TIIOPS. 7. Volkova L. V., Murav'eva O. V., Murav'ev V. V., Buldakova I. V. (2019). Apparatus and techniques for measuring acoustic anisotropy and residual stresses of metal of main gas pipelines. Pribory i metody izmereniy, Vol. 10 (1), pp. 42 – 52. [in Russian language] DOI: 10.21122/2220-9506-2019-10-1-42-52. EDN ZAKPZR. 8. Murav'ev V. V., Yakimov A. V., Volkova L. V., Platunov A. V. (2019). Study of biaxial stress state in rails P65 by acoustoelasticity method. Intellektual'nye sistemy v proizvodstve, Vol. 17 (1), pp. 19 – 25. [in Russian language] DOI: 10.22213/2410-9304-2019-1-19-25. EDN ZAWTZB. 9. Murav'ev V. V., Zlobin D. V., Len'kov S. V., Zverev N. N. (2016). Apparatus for measuring acoustic wave velocity in metals and alloys. Pribory i tekhnika eksperimenta, (3), pp. 142 – 146. [in Russian language] DOI: 10.7868/S0032816216020245. EDN VYLZNF. 10. Roshchupkin V. V., Lyahovitskiy M. M., Pokrasin M. A. et al. (2018). Experimental study acoustic properties and microhardness of steel 45. Perspektivnye materialy, (3), pp. 72 – 78. [in Russian language] DOI: 10.30791/1028-978X-2018-3-72-78. EDN YSINNW. 11. Chuprin A. V., Chuprin V. A., Zastava A. P., Sharin P. A. (2016). Standardization of the acoustic characteristics of the calibration blocks SO-2, SO-3 for ultrasonic testing according to GOST R 55724–2013. Kontrol'. Diagnostika, (11), pp. 4 – 8. [in Russian language] DOI: 10.14489/td.2016.11.pp.004-008. EDN XAAJBL. 12. Nikitina N. E., Kamyshev A. V., Kazachek S. V. (2012). Consideration of temperature factor during ultrasonic stress control of pipelines. Defektoskopiya, (5), pp. 20 – 25. [in Russian language] EDN OZGPJZ. 13. Roshchupkin V. V., Lyahovitskiy M. M., Pokrasin M. A., Minina N. A. (2017). Experimental study of acoustic properties of 04X19H9 steel. Teplofizika vysokih temperature, Vol. 55 (1), pp. 143 – 145. [in Russian language] DOI: 10.7868/S0040364417010197. EDN YIABAL. 14. Roshchupkin V. V., Lyahovitskiy M. M., Pokrasin M. A. et al. (2017). Experimental study of acoustic properties and microhardness of 09G2S steel. Teplofizika vysokih temperatur, Vol. 55 (6), pp. 778 – 781. [in Russian language] DOI: 10.7868/S0040364417060138. EDN XHDQQS. 15. Roshchupkin V. V., Lyahovitskiy M. M., Pokrasin M. A. et al. (2017). Acoustic properties and microhardness of 30KhGSA steel. Fizika i himiya obrabotki materialov, (1), pp. 77 – 82. [in Russian language] EDN XXNOKB. 16. Stepanova L. N., Kurbatov A. N., Tenitilov E. S. (2019). Study of longitudinal stresses in rails using the effect of acoustoelasticity on the existing section of railroad track. Kontrol'. Diagnostika, (2), pp. 14 – 21. [in Russian language] DOI: 10.14489/td.2019.02.pp.014-021. EDN MBCXPI. 17. Babkin S. E. (2020). Determination of the velocity of the main types of acoustic waves in metals with an attachable probe. Defektoskopiya, (4), pp. 32 – 39. [in Russian language] DOI: 10.31857/S0130308220040041. EDN ZCDEMQ. 18. Lo Savio F., Bonfanti M. (2019). A novel device for measuring the ultrasonic wave velocity and the thickness of hyperelastic materials under quasistatic deformations. Polymer Testing, Vol. 74, pp. 235 – 244. DOI: 10.1016/j.polymertesting.2019.01.005. EDN NOTQPO. 19. Serebrennikov A. V. (2014). Method for determining local internal stresses in structural materials. Gorniy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal), (S), pp. 102 – 109. [in Russian language] EDN RWTSJJ. 20. Shkelev E. I., Shirkaev A. V. (2018). Acoustic time delay meter. Pribory i tekhnika eksperimenta, (4), pp. 25 – 30. [in Russian language] DOI: 10.1134/S0032816218040298. EDN UWEDUS. 21. Mihaljević M., Markučič D., Runje B., Keran Z. (2019). Measurement uncertainty evaluation of ultrasonic wall thickness measurement. Measurement, Vol. 137, pp. 179 – 188. DOI: 10.1016/j.measurement.2019.01.027. EDN TDXZUQ. 22. Hlybov A. A., Kabaldin Yu. G., Anosov M. S., Ryabov D. A. (2021). Effect of Long-Term Operation on Physical and Mechanical Properties and Cold-Resistance Indices of 10G2 Tube Steel. Vestnik IzhGTU imeni M. T. Kalashnikova, Vol. 24 (1), pp. 38 – 44. [in Russian language] DOI: 10.22213/2413-1172-2021-1-38-44 23. Hlybov A. A., Uglov A. L., Ryabov D. A. (2021). On the peculiarities of using the phenomenon of acoustoelasticity to control the stress state of anisotropic material of technical objects at negative temperatures. Defektoskopiya, (1), pp. 23 – 32. [in Russian language] DOI: 10.31857/S0130308221010036. EDN TTPVOZ. 24. Murav'eva O. V., Murav'ev V. V., Strizhak V. A. et al. (2017). Acoustic waveguide control of linear-extended objects. Novosibirsk: Izdatel'stvo SO RAN. [in Russian language] 25. Murav'eva O. V., Zlobin D. V. (2013). Acoustic path of the method of multiple reflections in the flaw detection of linearly extended objects. Defektoskopiya, (2), pp. 43 – 51. [in Russian language] 26. Murav'eva O. V., Strizhak V. A., Zlobin D. V. et al. (2016). Acoustic waveguide control of depth-pumping equipment elements. Neftyanoe hozyaystvo, (9), pp. 110 – 115. [in Russian language] 27. Murav'ev V. V., Strizhak V. A., Hasanov R. R. (2016). Software features of the hardware complex for acoustic strain measurement and structure-scanning of metal products. Intellektual'nye sistemy v proizvodstve, 29(2), pp. 71 – 75. [in Russian language] EDN WAXWNJ. 28. Strizhak V. A., Hasanov R. R., Pryahin A. V. (2018). Peculiarities of electromagnetic-acoustic transducer excitation in waveguide control method. Vestnik IzhGTU imeni M.T. Kalashnikova, Vol. 21 (2), pp. 159 – 166. [in Russian language] DOI: 10.22213/2413-1172-2018-2-159-166. EDN XPTZXN. 29. Zlobin D. V., Volkova L. V. (2017). Influence of dynamic submagnetization on the electromagnetic-acoustic conversion efficiency in waveguide inspection of rods. Pribory i metody izmereniy, Vol. 8 (3), pp. 236 – 245. [in Russian language] DOI: 10.21122/2220-9506-2017-8-3-236-245. EDN ZFCJWB. 30. Strizhak V. A., Pryahin A. V., Obuhov S. A., Efremov A. B. (2011). Information-measuring system of excitation, reception, registration and processing of signals of electromagnetic-acoustic transducers. Intellektual'nye sistemy v proizvodstve, 17(1), pp. 243 – 250. [in Russian language] EDN NXVFTN. 31. Silin N. A. (Ed.), Sheludyak Yu. E., Kashporov L. Ya., Malinin L. A., Tsaklov V. N. (1992). Thermophysical properties of components of combustible systems: handbook. Moscow: NPO «Inform TEI». [in Russian language] 32. Novitskiy L. A., Kozhevnikov I. G. (1975). Thermophysical Properties of Materials at Low Temperatures: handbook. Moscow: Mashinostroenie. [in Russian language] 33. Dragunov Yu. G., Zubchenko A. S. (Eds.), Kashirskiy Yu. V. et al. (2015). High-quality steels and alloys. 4th ed. Moscow: Mashinostroenie. [in Russian language] 34. Roshchupkin V. V., Lyahovitskiy M. M., Pokrasin M. A., Minina N. A. (2016). Investigation of acoustic properties of 1X18H10T steel. Teplofizika vysokih temperatur, Vol. 54 (3), pp. 479 – 481. [in Russian language] DOI: 10.7868/S0040364416030170. EDN VYLZXP. 35. Novikov I. I., Roshchupkin V. V., Kol'tsov A. G. et al. (2012). Acoustic and acoustic emission properties of ferritic-martensitic chromium steels. Fizika i himiya obrabotki materialov, (2), pp. 87 – 91. [in Russian language] EDN OWTYAF.
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2023.03.pp.040-049
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2023.03.pp.040-049
and fill out the form
.
|