Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2023, 07 июль (July)

DOI: 10.14489/td.2023.07.pp.036-043

Денисов Е. С., Никишина Г. В., Енилиев Р. Р., Никишин Т. П.
ОСОБЕННОСТИ РЕАЛИЗАЦИИ МЕТОДА КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЛИТИЕВЫХ ИСТОЧНИКОВ ТОКА НА ОСНОВЕ АНАЛИЗА РЕЛАКСАЦИОННЫХ ПРОЦЕССОВ, ВЫЗВАННЫХ ИЗМЕНЕНИЕМ НАГРУЗКИ
(c. 36-43)

Аннотация. Описана адаптация методики оценки параметров электрической модели второго порядка литиевого источника тока, основанной на анализе его отклика на скачкообразное изменение нагрузки, для применения во встроенных системах контроля. Предложен способ сокращения вычислительных затрат и повышения оперативности контроля, заключающийся в последовательной идентификации параметров двух одноэкспоненциальных моделей на основе экспериментальных релаксационных кривых. Преимуществом такого подхода является возможность простой и малогабаритной реализации цепей формирования зондирующего сигнала и устройств цифровой обработки сигналов.

Ключевые слова:  технический контроль, литиевый источник тока, релаксационный процесс, модуляция нагрузки, встроенные системы.

 

Denisov E. S., Nikishina G. V., Eniliev R. R., Nikishin T. P.
IMPLEMENTATION PECULIARITIES OF METHOD FOR LITHIUM BATTERIES TECHNICAL STATE MONITORING BASED ON ANALYSIS OF RELAXATION PROCESSES CAUSED BY LOAD VARIATIONS
(pp. 36-43)

Abstract. The paper describes a technique for estimating the parameters of the second-order electrical model of lithium battery (LB), based on the analysis of its response to a step-like load change. The advantage of this approach is the implementation with simple and compact measuring equipment. Taking into account the limitations for the maximum LB load, the solution of a system of nonlinear equations when estimating the model parameters can be reduced to solving a system of linear algebraic equations. This finding makes it possible to implement the approach with inexpensive general-purpose microcontrollers. Thus, the paper proposes a method for reducing computational costs, which consists in sequential fitting of experimental relaxation curves with two single-exponential models instead of using a complex two-exponential model. It provides more than twofold reduction in the time for identifying the parameters of the LB’s electrical model. The experimental studies show that the obtained dependences of the equivalent circuit parameters can be explained by the general properties of physicochemical reactions occurring in LB. From a practical point of view, the proposed method has great advantages. First, it has better time localization compared to electrochemical impedance spectrometry. This advantage is especially important for LB due to the effect of the discharge processes on the results. In addition, the response time of diagnostic systems is significantly reduced. Secondly, the proposed method requires simpler and more inexpensive test equipment, which potentially makes it possible to integrate controls into the LB at the manufacturing and exploitation stages.

Keywords: technical control, lithium battery, relaxation process, load variation, embedded systems.

Рус

Е. С. Денисов, Г. В. Никишина, Р. Р. Енилиев, Т. П. Никишин (ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева – КАИ», Казань, Республика Татарстан, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

E. S. Denisov, G. V. Nikishina, R. R. Eniliev, T. P. Nikishin (Federal State Budgetary Educational Institution of Higher Education «Kazan National Research Technical University named after A. N. Tupolev – KAI», Kazan, Republic of Tatarstan, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Westerhoff U., Kroker T., Kurbach K., et al. Electrochemical impedance spectroscopy based estimation of the state of charge of lithiumion batteries // Journal of Energy Storage. 2016. V. 8. P. 244 – 256.
2. Cañas A. N., Hirose K., Passcucci B., et al. Investigations of lithium–sulfur batteries using electro-chemical impedance spectroscopy // Electrochemical Acta. 2013. V. 91. P. 42 – 51.
3. Deng Z., Zhang Z., Lai Y., et al. Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading // Journal of The Electrochemical Society. 2013. V. 91, No. 4. P. A553–A558.
4. Li X., Dai K., Wang Z., et al. Lithiumion batteries fault diagnostic for electric vehicles using sample entropy analysis method // Journal of Energy Storage. 2020. V. 27. Art. 101121.
5. Tran M.-K., Fowler M. A review of lithiumion battery fault diagnostic algorithms: current progress and future challenges // Algorithms. 2020. No. 62. P. 1 – 18.
6. Никишин Т. П., Денисов Е. С., Адъютантов Н. А. Релаксационные процессы батарей твердополимерных водородных топливных элементов и оценка их диагностических свойств // Приборы и системы. Управление, контроль, диагностика. 2020. № 7. С. 1 – 12.
7. Astafev E. Electrochemical noise of a Li-Ion battery during the charging process // Instrumentation Science and Technology. 2020. V. 48, No. 2. P. 162 – 172.
8. Астафьев Е. А. Измерение и анализ электро-химических шумов литийионного аккумулятора // Электрохимия. 2019. Т. 55, № 6. С. 654 – 662.
9. Денисов Е. С., Евдокимов Ю. К. Построение систем контроля и диагностики водородного топливного элемента на основе наблюдения его электрических флуктуаций и шумов // Вестник КГТУ им. А. Н. Туполева. 2011. № 1. С. 47 – 54.
10. Mezzi R., Yousfi-Steiner N., Pera M.-C., et al. An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile // Applied Energy. 2021. V. 283. Art. 116297.
11. Денисов Е. С., Гайсин Н. Р., Никишин Т. П. и др. Контроль и прогнозирование критических режимов работы водородных топливных элементов в процессе эксплуатации на основе искусственных нейронных сетей // Приборы и системы. Управление, контроль, диагностика. 2021. № 12. С. 11 – 16.
12. Denisov E., Nikishina G., Demidov A. Electrochemical power sources relaxations related with step-like load variation // Ural symposium on biomedical engineering, radioelectronics and information technology (USBEREIT) 2020. P. 230–233.
13. Пат. на изобр. 2753085 C1, 11.08.2021. Способ оценки технического состояния электрохимического источника тока и устройство, его реализующее / Е. С. Денисов, Г. В. Никишина. Заявка № 2020140522 от 09.12.2020. Опубл. 2021.08.11.
14. Никишина Г. В., Денисов Е. С. Диагностика электрохимических источников тока на основе анализа переходных процессов, вызванных изменениями нагрузки // Вестник КГТУ им. А. Н. Туполева. 2021. Т. 77, № 2. С. 105 – 115.
15. Никишина Г. В., Никишин Т. П., Денисов Е. С. Идентификация параметров электрической модели электрохимических источников тока на основе анализа переходных процессов, вызванных изменениями нагрузки // Вестник Казанского государственного технического университета им. А. Н. Туполева. 2022. Т. 78, № 3. С. 121 – 128.
16. Eniliev R., Denisov E., Nikishina G. Automated System for Lithium-Ion Batteries Study Based on Relaxation Processes Analysis // International Conference on Actual Problems of Electron Devices Engineering (APEDE). 2022. P. 153 – 156.
17. Енилиев Р. Р., Денисов Е. С., Никишина Г. В. Аппаратное обеспечение автоматизированной системы диагностики аккумуляторов по переходным характеристикам // Динамика нелинейных дискретных электротехнических и электронных систем: материалы XIV Всерос. науч.-техн. конф., Чебоксары, 4 июня 2021 г. Чебоксары, 2021. C. 14–15.

Eng

1. Westerhoff U., Kroker T., Kurbach K. et al. (2016). Electrochemical impedance spectroscopy based estimation of the state of charge of lithiumion batteries. Journal of Energy Storage, Vol. 8, pp. 244 – 256.
2. Cañas A. N., Hirose K., Passcucci B. et al. (2013). Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochemical Acta, Vol. 91, pp. 42 – 51.
3. Deng Z., Zhang Z., Lai Y. et al. (2013). Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading. Journal of The Electrochemical Society, Vol. 91 (4), pp. A553–A558.
4. Li X., Dai K., Wang Z. et al. (2020). Lithiumion batteries fault diagnostic for electric vehicles using sample entropy analysis method. Journal of Energy Storage, Vol. 27. Art. 101121.
5. Tran M.-K., Fowler M. (2020). A review of lithi-um-ion battery fault diagnostic algorithms: current progress and future challenges. Algorithms, 62, pp. 1 – 18.
6. Nikishin T. P., Denisov E. S., Adyutantov N. A. (2020). Relaxation Processes of Batteries of Solid Polymer Hydrogen Fuel Cells and Evaluation of Their Diagnostic Properties. Pribory i sistemy. Upravlenie, kontrol', diagnostika, (7), pp. 1 – 12. [in Russian language]
7. Astafev E. (2020). Electrochemical noise of a LiIon battery during the charging process. Instrumentation Science and Technology, Vol. 48 (2), pp. 162 – 172.
8. Astaf'ev E. A. (2019). Measurement and analysis of electrochemical noise of a lithium-ion battery. Elektrohimiya, Vol. 55 (6), pp. 654 – 662. [in Russian language]
9. Denisov E. S., Evdokimov Yu. K. (2011). Construction of control and diagnostic systems for a hydrogen fuel cell based on the observation of its electrical fluctuations and noise. Vestnik KGTU im. A. N. Tupoleva, (1), pp. 47 – 54. [in Russian language]
10. Mezzi R., Yousfi-Steiner N., Pera M.-C., et al. (2021). An Echo State Network for fuel cell lifetime prediction under a dynamic microcogeneration load profile. Applied Energy, Vol. 283. Art. 116297.
11. Denisov E. S., Gaysin N. R., Nikishin T. P. et al. (2021). Control and prediction of critical operating modes of hydrogen fuel cells during operation based on artificial neural networks. Pribory i sistemy. Upravlenie, kontrol', diagnostika, (12), pp. 11 – 16. [in Russian language]
12. Denisov E., Nikishina G., Demidov A. (2020). Electrochemical power sources relaxations related with step-like load variation. Ural symposium on biomedical engineering, radioelectronics and information technology (USBEREIT), pp. 230–233.
13. Denisov E. S., Nikishina G. V. A method for assessing the technical state of an electrochemical current source and a device that implements it. Invention Patent No. 2753085 C1. [in Russian language]
14. Nikishina G. V., Denisov E. S. (2021). Diagnostics of electrochemical current sources based on the analysis of transients caused by load changes. Vestnik KGTU im. A. N. Tupoleva, Vol. 77 (2), pp. 105 – 115. [in Russian language]
15. Nikishina G. V., Nikishin T. P., Denisov E. S. (2022). Identification of the parameters of the electrical model of electrochemical current sources based on the analysis of transient processes caused by load changes. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A. N. Tupoleva, Vol. 78 (3), pp. 121 – 128. [in Russian language]
16. Eniliev R., Denisov E., Nikishina G. (2022). Automated System for Lithium-Ion Batteries Study Based on Relaxation Processes Analysis. International Conference on Actual Problems of Electron Devices Engineering (APEDE), pp. 153 – 156.
17. Eniliev R. R., Denisov E. S., Nikishina G. V. (2021). Hardware for an automated system for diagnosing batteries by transient characteristics. Dynamics of Nonlinear Discrete Electrical and Electronic Systems: Proceedings of the XIV All-Russian Scientific and Technical Conference, pp. 14 – 15. Cheboksary. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2023.07.pp.036-043

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.07.pp.036-043

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования