Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2023, 09 сентябрь (September)

DOI: 10.14489/td.2023.09.pp.027-041

Муравьева О. В., Брестер А. Ф., Владыкин А. Л.
ЗАКОНОМЕРНОСТИ ФОКУСИРОВКИ ПОЛЯ ПРОХОДНОГО ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ПОПЕРЕЧНЫХ ВОЛН
(c. 27-41)

Аннотация. Экспериментально и теоретически с использованием COMSOL Multiphysics исследовано влияние характеристик проходного электромагнитно-акустического преобразователя и объекта контроля на параметры фокусировки поперечных волн. Показано, что в радиальной плоскости сечения наблюдается формирование сходящегося сферического фронта, в осевой плоскости – близкого к плоскому фронту. Представлено влияние на коэффициент фокусировки и диаметр фокусного пятна диаметра объекта, рабочей частоты и добротности импульса возбуждения. Разработанная модель формирования зоны фокуса проходного ЭМА-преобразователя может быть использована при анализе акустического тракта зеркально-теневого метода многократной тени в зависимости от характеристик объекта и параметров контроля.

Ключевые слова:  фокусировка акустических волн, проходной электромагнитно-акустический преобразователь, поперечная волна, моделирование.

 

Murav’eva O. V., Brester A. F., Vladykin A. L.
REGULARITIES OF THE FIELD FOCUS OF THE THROUGH-TYPE ELECTROMAGNETIC ACOUSTIC TRANSDUCER OF TRANSVERSE WAVES
(pp. 27-41)

Abstract. The article presents the results of experimental and theoretical research of the influence of the characteristics of a through-type electromagnetic-acoustic transducer and testing object on the focusing parameters of transverse waves using COMSOL Multiphysics. It is shown that in the radial plane of the section, the formation of a converging spherical front is observed, in the axial plane – close to a flat front. The influence on the focusing factor and the diameter of the focal spot of the diameter of the object, the operating frequency and the quality factor of the excitation pulse is presented. The developed model of the formation of the focus zone of the through-type EMAT can be used in the analysis of the acoustic path of the mirror-shadow method of multiple shadow, depending on the characteristics of the object and control parameters.

Keywords: acoustic wave focusing, through-type electromagnetic acoustic transducer, transverse wave, simulation.

Рус

О. В. Муравьева (Ижевский государственный технический университет им. М. Т. Калашникова; Удмуртский федеральный исследовательский центр УрО РАН, Ижевск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. Ф. Брестер, А. Л. Владыкин (Ижевский государственный технический университет им. М. Т. Калашникова, Ижевск, Россия) E-mail: basharova.af @gmail.com, Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

O. V. Murav’eva (Kalashnikov Izhevsk State Technical University, Izhevsk, Russia, Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences, Izhevsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. F. Brester, A. L. Vladykin (Kalashnikov Izhevsk State Technical University, Izhevsk, Russia) E-mail: basharova.af @gmail.com, Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Rudenko O. V. Nonlinear Acoustics in Medicine: A Review // Physics of Wave Phenomena. 2022. V. 30, No. 2. P. 73–85. DOI: 10.3103/S1541308X22020066. EDN: IAQTPU
2. Чупова Д. Д., Росницкий П. Б., Гаврилов Л. Р. и др. Компенсация искажений фокусированных ультразвуковых пучков при транскраниальном облучении головного мозга на различной глубине // Акустический журнал. 2022. Т. 68, № 1. С. 3–13. DOI: 10.31857/S0320791922010014. EDN: WZMRBZ
3. Андреева Т. А., Беркович А. Е., Быков Н. Ю. и др. Фокусированный ультразвук высокой интенсивности: тепловой нагрев и разрушение биологической ткани // Журнал технической физики. 2020. Т. 90, № 9. С. 1516–1527. DOI: 10.21883/JTF.2020.09.49685.54-20. EDN: OEKCOO
4. Осипов Л. В., Кульберг Н. С., Леонов Д. В. и др. Трехмерное ультразвуковое исследование: технологии, тенденции развития // Медицинская техника. 2018. № 3(309). С. 39–43. EDN: NRLLKN
5. Осипов Л. В., Кульберг Н. С., Леонов Д. В. и др. Трехмерное ультразвуковое исследование: особенности визуализации объемных данных // Медицинская техника. 2020. № 2(320). С. 51–55. EDN: MECVNJ
6. Панков В. В., Померанцев Д. С. Ультразвуковой контроль с применением преобразователей с фазированной решеткой. Базовые принципы. Ч. 1. Технология фазированных решеток, терминология и стандартизация // Контроль. Диагностика. 2020. № 3. С. 38–43. DOI: 10.14489/td.2020.03.pp.038-043. EDN: FMKUDC
7. Титов В. Ю. Исследование параметров ультразвукового дефектоскопа на фазированных решетках. Режимы фокусировки для ультразвукового дефектоскопа типа OmniScan // Контроль. Диагностика. 2021. Т. 24, № 8(278). С. 24–35. DOI: 10.14489/td.2021.08.pp.024-035. EDN: ENILTU
8. Качанов В. К., Соколов И. В., Концов Р. В. и др. Использование алгоритма «фокусировка в точку» для безэталонного измерения скорости ультразвука при томографии строительных конструкций из бетона // Дефектоскопия. 2019. № 6. С. 20–29. DOI: 10.1134/S0130308219060034. EDN: IMSJVX
9. Базулин А. Е., Базулин Е. Г., Вопилкин А. Х. и др. Контроль образцов из полимерных композиционных материалов с использованием ультразвуковых антенных решеток // Дефектоскопия. 2022. № 6. С. 3–16. DOI: 10.31857/S013030822206001X. EDN: BMGAYP
10. Ефимов И. М. Современное оборудование для ультразвукового контроля сварных соединений // В мире неразрушающего контроля. 2019. Т. 22, № 3. С. 36–40. DOI: 10.12737/article_5d5fd14cb04e89.60292443. EDN: FEYZZI
11. Мороков Е. С., Левин В. М. Пространственное разрешение акустической микроскопии при визуализации границ раздела в объеме твердого материала // Акустический журнал. 2019. Т. 65, № 2. С. 190–196. DOI: 10.1134/S0320791919020102. EDN: YYEMGL
12. Шевалдыкин В. Г., Самокрутов А. А. Цифровая фокусировка апертуры при зондировании объекта контроля всеми элементами антенной решетки в одном цикле излучениеприем // Дефектоскопия. 2022. № 2. С. 13–27. DOI: 10.31857/S0130308222020026. EDN: IJZPAT
13. Базулин Е. Г. Ультразвуковой контроль сварных соединений трубопровода типа Ду800. Ч. 1. Восстановление изображения отражателей методом цифровой фокусировки антенной // Дефектоскопия. 2017. № 3. С. 12–26. EDN: YIXPHH
14. Самокрутов А. А., Шевалдыкин В. Г. Оценка дефектов при ультразвуковом контроле методом цифровой фокусировки апертуры. Условия, возможности, границы применимости // Контроль. Диагностика. 2017. № 9. С. 6–18. DOI: 10.14489/td.2017.09.pp.006-018. EDN: ZEOPOR
15. Tkocz J., Greenshields D., Dixon S. High power phased EMAT arrays for nondestructive testing of ascast steel // NDT & E International. 2019. V. 102. P. 47–55. DOI: 10.1016/j.ndteint.2018.11.001
16. Thring C. B., Fan Y., Edwards R. S. Focused Rayleigh wave EMAT for characterisation of surface-breaking defects // NDT & E International. 2016. V. 81. P. 20–27. DOI: 10.1016/j.ndteint.2016.03.002
17. Liu J., Liu S., Zhang C., et al. A New Focused EMAT Design with Narrow Magnet to Achieve Both A0-Lamb Signal Enhancement and Waveform Distortion Correction // IEEE Sensors Journal. 2022. V. 22, No. 15. P. 14786–14798. DOI: 10.1109/JSEN.2022.3185616
18. Thring C. B., Hill S. J., Dixon S., Edwards R. S. The effect of EMAT coil geometry on the Rayleigh wave frequency behaviour // Ultrasonics. 2019. V. 99. DOI: 10.1016/j.ultras.2019.06.007
19. Clough M., Fleming M., Dixon S. Circumferential guided wave EMAT system for pipeline screening using shear horizontal ultrasound // NDT & E International. 2017. V. 86. P. 20–27. DOI: 10.1016/j.ndteint.2016.11.010
20. Hongyu Sun, Songling Huang, Qing Wang, et al. Orthogonal Optimal Design Method for Point-Focusing EMAT Considering Focal Area Dimensions // Sensors and Actuators A: Physical. 2020. V. 312. DOI: 10.1016/j.sna.2020.112109
21. Sun H., Wang S., Huang S., et al. Point-Focusing Shear-Horizontal Guided Wave EMAT Optimization Method Using Orthogonal Test Theory // IEEE Sensors Journal. 2020. V. 20, No. 12. P. 6295–6304. DOI: 10.1109/JSEN.2020.2976198
22. Min He, Wenze Shi, Chao Lu, et al. Application of pulse compression technique in metal materials cracks detection with LF-EMATs // Nondestructive Testing and Evaluation. 2023. P. 45–66. DOI: 10.1080/10589759.2022.2066664
23. Сухорукова О. Б., Швецова Н. А., Швецов И. А. и др. Теоретические расчеты и численное моделирование фокусированных ультразвуковых полей // Вестник Ростовского государственного университета путей сообщения. 2018. № 2(70). С. 154–165. EDN: XRKYWT
24. Швецов И. А., Щербинин С. А., Астафьев П. А. и др. Численное моделирование и оптимизация акустических полей и конструкций фокусирующих ультразвуковых преобразователей высокой интенсивности // Известия Российской академии наук. Сер. физическая. 2018. Т. 82, № 3. С. 405–408. DOI: 10.7868/S0367676518030328. EDN: YTFVWT
25. Муравьева О. В., Петров К. В. Акустическое поле, формируемое в условиях импульсного излучения-приема на поверхности эллиптического цилиндра // Акустический журнал. 2019. Т. 65, № 1. С. 110–119. DOI: 10.1134/S0320791919010064. EDN: YWYHDF
26. Петров К. В., Муравьева О. В., Мышкин Ю. В., Башарова А. Ф. Моделирование магнитных, электрических и акустических полей проходного преобразователя для контроля цилиндрических объектов // Дефектоскопия. 2019. № 2. С. 16–24. DOI: 10.1134/S0130308219020027. EDN YYTNIT
27. Мичуров А. В., Соколкин А. В. Расчет влияния на акустическое поле преломлений и отражений на криволинейных поверхностях оболочек вращения // Дефектоскопия. 2020. № 1. С. 31–43. DOI: 10.31857/S0130308220010042. EDN: MZVWEM
28. Gutiérrez M. I., Vera A., Leija L., et al. Acoustic field modeling of focused ultrasound transducers using non-uniform radiation distributions // 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Mexico, 2017. P. 1–4. DOI: 10.1109/ICEEE.2017.8108871
29. Jun Zhang, Yi Chen, Liuqing Yang. Numerical calculation and measurement for the focus field of concave spherical acoustic lens transducer // MATEC Web Conf. 2019. V. 283. DOI: 10.1051/matecconf/201928305007
30. Борисов В. И., Сергеев С. С., Прокопенко Е. Н. и др. Структура акустического поля излучения фокусирующих пьезопреобразователей // Вестник Белорусско-Российского университета. 2017. № 1 (54). С. 119–127. DOI: 10.53078/20778481_2017_1_119. EDN: YFMGUH
31. Ющенко В. П., Эдвабник В. Г., Гофман О. В. и др. Метод реконструкции изображения объекта с помощью кольцевой антенной решетки // Автометрия. 2020. Т. 56, № 6. С. 68–77. DOI: 10.15372/AUT20200608. EDN: IWLKQF
32. Shvetsov I. A., Shcherbinin S. A., Shvetsova N. A., et al. Experimental study of high intensity focused ultrasonic fields generated by piezocomposite transducers // Ferroelectrics. 2019. V. 539, No. 1. P. 118–125. DOI: 10.1080/00150193.2019.1570021. EDN: PNDGRJ
33. Rybyanets A. N., Shvetsov I. A., Petrova E. I., et al. Numerical simulation and optimization of acoustic fields and designs of composite HIFU transducers // Ferroelectrics. 2019. V. 543, No. 1. P. 48–53. DOI: 10.1080/00150193.2019.1592447
34. Ермолин К. С., Шелковников Ю. К., Осипов Н. И. Исследование модели распространения ультразвуковых колебаний в иммерсионной среде с образцом // Ползуновский альманах. 2019. № 4. С. 39–43. EDN: UNYECR
35. Муравьева О. В., Соков М. Ю., Мышкин Ю. В. Формирование акустического поля проходного преобразователя в деталях с резьбой // Интеллектуальные системы в производстве. 2018. Т. 16, № 4. С. 45–56. DOI: 10.22213/2410-9304-2018-4-45-56. EDN: VQLEPG
36. Муравьева О. В., Мышкин Ю. В., Наговицын А. А. К вопросу о повышении эффективности проходного электромагнитно-акустического преобразователя продольных волн // Дефектоскопия. 2023. № 3. С. 3–13. DOI: 10.31857/S0130308223030016. EDN: OOQZWK
37. Петров К. В., Соков М. Ю., Муравьева О. В. Влияние конструктивных особенностей проходного электромагнитно-акустического преобразователя на результаты контроля цилиндрических объектов // Вестник ИжГТУ им. М. Т. Калашникова. 2018. Т. 21, № 2. С. 135–146. DOI: 10.22213/2413-1172-2018-2-135-146. EDN: URBGKH
38. Муравьев В. В., Будрин А. Ю., Синцов М. А. Структуроскопия термически обработанных стальных прутков по скорости распространения рэлеевских волн // Интеллектуальные системы в производстве. 2020. Т. 18, № 2. С. 37–43. DOI: 10.22213/2410-9304-2020-2-37-43. EDN: VGDDFW
39. Муравьева О. В., Муравьев В. В., Башарова А. Ф. и др. Влияние термической обработки и структурного состояния стали 40Х пруткового сортамента на скорость ультразвуковых волн и коэффициент Пуассона // Сталь. 2020. № 8. С. 63–68. EDN: MKTWDN
40. Муравьев В. В., Муравьева О. В., Вагапов Т. Р. и др. Акустические и электромагнитные свойства заготовок стволов гражданских ружей // Интеллектуальные системы в производстве. 2023. Т. 21, № 1. С. 59–70. DOI: 10.22213/2410-9304-2023-1-59-70. EDN: KBBVGW
41. Вержбицкий В. М. Численные методы математической физики. М.: Директ-Медиа, 2013. 212 с.
42. Муравьева О. В., Брестер А. Ф., Муравьев В. В. Сравнительная чувствительность информативных параметров электромагнитно-акустического зеркально-теневого метода на многократных отражениях при контроле пруткового проката // Дефектоскопия. 2022. № 8. С. 36–51. DOI: 10.31857/S0130308222080048. EDN: BQEKGO

Eng

1. Rudenko O. V. (2022). Nonlinear Acoustics in Medicine: A Review. Physics of Wave Phenomena, 30(2), 73 – 85. DOI: 10.3103/S1541308X22020066. EDN:IAQTPU.
2. Chupova D. D., Rosnitskiy P. B., Gavrilov L. R. et al. (2022). Compensation for distortions of focused ultrasound beams during transcranial irradiation of the brain at different depths. Akusticheskiy zhurnal, 68(1), 3 – 13. [in Russian language] DOI: 10.31857/S0320791922010014. EDN: WZMRBZ.
3. Andreeva T. A., Berkovich A. E., Bykov N. Yu. et al. (2020). High Intensity Focused Ultrasound: Thermal Heating and Destruction of Biological Tissue. Zhurnal tekhnicheskoy fiziki, 90(9), 1516 – 1527. [in Russian language] DOI: 10.21883/JTF.2020.09.49685.54-20. EDN: OEKCOO.
4. Osipov L. V., Kul'berg N. S., Leonov D. V. et al. (2018). Three-dimensional ultrasound: technologies, development trends. Meditsinskaya tekhnika, 309(3), 39 – 43. [in Russian language] EDN: NRLLKN.
5. Osipov L. V., Kul'berg N. S., Leonov D. V. et al. (2020). 3D Ultrasound: Features of Volume Data Visualization. Meditsinskaya tekhnika, 320(2), 51 – 55. [in Russian language] EDN: MECVNJ.
6. Pankov V. V., Pomerantsev D. S. (2020). Ultra-sound testing with using of the phased array probes. Basic principles. Part 1. Phased array technology, terminology and standardization. Kontrol'. Diagnostika, (3), 38 – 43. [in Russian language] DOI: 10.14489/td.2020.03.pp.038-043. EDN: FMKUDC.
7. Titov V. Yu. (2021). Investigation parameters ultrasonic device on phased arrays. Focusing modes for ultrasonic device type of OmniScan. Kontrol'. Diagnostika, 278(8), 24 – 35. [in Russian language] DOI: 10.14489/td.2021.08.pp.024-035. EDN: ENILTU.
8. Kachanov V. K., Sokolov I. V., Kontsov R. V. et al. (2019). Using the “focusing to a point” algorithm for standard-free measurement of ultrasound velocity in tomography of building structures made of concrete. Defektoskopiya, (6), 20 – 29. [in Russian language] DOI: 10.1134/S0130308219060034. EDN: IMSJVX.
9. Bazulin A. E., Bazulin E. G., Vopilkin A. H. et al. (2022). Inspection of Samples from Polymer Composite Materials Using Ultrasonic Antenna Arrays. Defektoskopiya, (6), 3 – 16. [in Russian language] DOI: 10.31857/ S013030822206001X. EDN: BMGAYP.
10. Efimov I. M. (2019). Modern equipment for ultrasonic testing of welded joints. V mire nerazrushayushchego kontrolya, 22(3), 36 – 40. [in Russian language] DOI: 10.12737/article_5d5fd14cb04e89.60292443. EDN: FEYZZI.
11. Morokov E. S., Levin V. M. (2019). Spatial resolution of acoustic microscopy in the visualization of interfaces in the bulk of a solid material. Akusticheskiy zhurnal, 65(2), 190 – 196. [in Russian language] DOI: 10.1134/ S0320791919020102. EDN: YYEMGL.
12. Shevaldykin V. G., Samokrutov A. A. (2022). Digital focusing of the aperture when probing the test object by all elements of the antenna array in one transmission-reception cycle. Defektoskopiya, (2), 13 – 27. [in Russian language] DOI: 10.31857/ S0130308222020026. EDN: IJZPAT.
13. Bazulin E. G. (2017). Ultrasonic testing of welded joints of pipeline type Du800. Part 1. Reconstruction of the image of reflectors by the method of digital focusing with an antenna. Defektoskopiya, (3), 12 – 26. [in Russian language] EDN: YIXPHH.
14. Samokrutov A. A., Shevaldykin V. G. (2017). Evaluation of defects in ultrasonic testing by digital focused array technique. The conditions, possibilities, boundaries of the applicability. Kontrol'. Diagnostika, (9), 6 – 18. [in Russian language] DOI: 10.14489/td.2017.09.pp.006-018. EDN: ZEOPOR
15. Tkocz J., Greenshields D., Dixon S. (2019). High power phased EMAT arrays for nondestructive testing of ascast steel. NDT & E International, 102, 47 – 55. DOI: 10.1016/j.ndteint.2018.11.001.
16. Thring C. B., Fan Y., Edwards R. S. (2016). Focused Rayleigh wave EMAT for characterisation of surface-breaking defects. NDT & E International, 81, 20 – 27. DOI: 10.1016/j.ndteint.2016.03.002.
17. Liu J., Liu S., Zhang C. et al. (2022). A New Focused EMAT Design with Narrow Magnet to Achieve Both A0-Lamb Signal Enhancement and Waveform Distortion Correction. IEEE Sensors Journal, 15, 14786 – 14798. DOI: 10.1109/JSEN.2022.3185616.
18. Thring C. B., Hill S. J., Dixon S., Edwards R. S. (2019). The effect of EMAT coil geometry on the Rayleigh wave frequency behavior. Ultrasonics, 99. DOI: 10.1016/j.ultras. 2019.06.007.
19. Clough M., Fleming M., Dixon S. (2017). Circumferential guided wave EMAT system for pipeline screening using shear horizontal ultrasound. NDT & E International, 86, 20 – 27. DOI: 10.1016/j.ndteint.2016.11.010.
20. Hongyu Sun, Songling Huang, Qing Wang et al. (2020). Orthogonal Optimal Design Method for Point-Focusing EMAT Considering Focal Area Dimensions. Sensors and Actuators A: Physical, 312. DOI: 10.1016/j.sna.2020.112109.
21. Sun H., Wang S., Huang S. et al. (2020). Point-Focusing Shear-Horizontal Guided Wave EMAT Optimization Method Using Orthogonal Test Theory. IEEE Sensors Journal, 20(12), 6295 – 6304. DOI: 10.1109/JSEN.2020.2976198.
22. Min He, Wenze Shi, Chao Lu et al. (2023). Application of pulse compression technique in metal materials cracks detection with LF-EMATs. Nondestructive Testing and Evaluation, 45 – 66. DOI: 10.1080/10589759.2022.2066664
23. Suhorukova O. B., Shvetsova N. A., Shvetsov I. A. et al. (2018). Theoretical calculations and numerical simulation of focused ultrasonic fields. Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya, 70(2), 154 – 165. [in Russian language] EDN: XRKYWT.
24. Shvetsov I. A., Shcherbinin S. A., Astaf'ev P. A. et al. (2018). Numerical modeling and optimization of acoustic fields and designs of high-intensity focusing ultrasonic transducers. Izvestiya Rossiyskoy akademii nauk. Seriya fizicheskaya, 82(3), 405 – 408. [in Russian language] DOI: 10.7868/S0367676518030328. EDN: YTFVWT.
25. Murav'eva O. V., Petrov K. V. (2019). Acoustic field formed under conditions of pulsed radiation-reception on the surface of an elliptical cylinder. Akusticheskiy zhurnal, 65(1), 110 – 119. [in Russian language] DOI: 10.1134/ S0320791919010064. EDN: YWYHDF.
26. Petrov K. V., Murav'eva O. V., Myshkin Yu. V., Basharova A. F. (2019). Modeling of magnetic, electric and acoustic fields of a transducer for testing cylindrical objects. Defektoskopiya, (2), 16 – 24. [in Russian language] DOI 10.1134/S0130308219020027. EDN YYTNIT.
27. Michurov A. V., Sokolkin A. V. (2020). Calculation of the influence on the acoustic field of refractions and reflections on curved surfaces of shells of revolution. Defektoskopiya, (1), 31 – 43. [in Russian language] DOI: 10.31857/S0130308220010042. EDN: MZVWEM.
28. Gutiérrez M. I., Vera A., Leija L. et al. (2017). Acoustic field modeling of focused ultrasound transducers using non-uniform radiation distributions. 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1 – 4. Mexico. DOI: 10.1109/ICEEE.2017.8108871.
29. Jun Zhang, Yi Chen, Liuqing Yang. (2019). Numerical calculation and measurement for the focus field of concave spherical acoustic lens transducer. MATEC Web Conference, 283. DOI: 10.1051/matecconf/201928305007.
30. Borisov V. I., Sergeev S. S., Prokopenko E. N. et al. (2017). The structure of the acoustic field of radiation of focusing piezoelectric transducers. Vestnik Belorussko-Rossiyskogo universiteta, 54(1), 119 – 127. [in Russian language] DOI: 10.53078/20778481_2017_1_119. EDN: YFMGUH.
31. Yushchenko V. P., Edvabnik V. G., Gofman O. V. et al. (2020). Method for reconstructing an object image using an annular array. Avtometriya, 56(6), 68 – 77. [in Russian language] DOI: 10.15372/AUT20200608. EDN: IWLKQF.
32. Shvetsov I. A., Shcherbinin S. A., Shvetsova N. A. et al. (2019). Experimental study of high intensity focused ultrasonic fields generated by piezocomposite transducers. Ferroelectrics, 539(1), 118 – 125. DOI: 10.1080/00150193.2019.1570021. EDN: PNDGRJ.
33. Rybyanets A. N., Shvetsov I. A., Petrova E. I. et al. (2019). Numerical simulation and optimization of acoustic fields and designs of composite HIFU transducers. Ferroelectrics, 543(1), 48 – 53. DOI: 10.1080/00150193.2019.1592447.
34. Ermolin K. S., Shelkovnikov Yu. K., Osipov N. I. (2019). Investigation of the model of propagation of ultrasonic vibrations in an immersion medium with a sample. Polzunovskiy al'manah, (4), 39 – 43. [in Russian language] EDN: UNYECR.
35. Murav'eva O. V., Sokov M. Yu., Myshkin Yu. V. (2018). Formation of the acoustic field of the transducer in threaded parts. Intellektual'nye sistemy v proizvodstve, 16(4), 45 – 56. [in Russian language] DOI: 10.22213/2410-9304-2018-4-45-56. EDN: VQLEPG.
36. Murav'eva O. V., Myshkin Yu. V., Nagovitsyn A. A. (2023). On the issue of increasing the efficiency of a through electromagnetic-acoustic transducer of longitudinal waves. Defektoskopiya, (3), 3 – 13. [in Russian language] DOI: 10.31857/ S0130308223030016. EDN: OOQZWK.
37. Petrov K. V., Sokov M. Yu., Murav'eva O. V. (2018). The Influence of Design Features of a Pass-Through Electromagnetic-Acoustic Transducer on the Results of Inspection of Cylindrical Objects. Vestnik IzhGTU im. M. T. Kalashnikova, 21(2), 135 – 146. [in Russian language] DOI: 10.22213/2413-1172-2018-2-135-146. EDN: URBGKH.
38. Murav'ev V. V., Budrin A. Yu., Sintsov M. A. (2020). Structuroscopy of heat-treated steel bars by the propagation velocity of Rayleigh waves. Intellektual'nye sistemy v proizvodstve, 18(2), 37 – 43. [in Russian language] DOI: 10.22213/2410-9304-2020-2-37-43. EDN: VGDDFW.
39. Murav'eva O. V., Murav'ev V. V., Basharova A. F. et al. (2020). Effect of Heat Treatment and Structural State of Steel 40Kh Bar Gauge on Ultrasonic Wave Velocity and Poisson's Ratio. Stal', (8), 63 – 68. [in Russian language] EDN: MKTWDN.
40. Murav'ev V. V., Murav'eva O. V., Vagapov T. R. et al. (2023). Acoustic and electromagnetic properties of blanks of barrels of civilian guns. Intellektual'nye sistemy v proizvodstve, 21(1), 59 – 70. [in Russian language] DOI: 10.22213/2410-9304-2023-1-59-70. EDN: KBBVGW.
41. Verzhbitskiy V. M. (2013). Numerical methods of mathematical physics. Moscow: Direkt-Media. [in Russian language]
42. Murav'eva O. V., Brester A. F., Murav'ev V. V. (2022). Comparative Sensitivity of Informative Parameters of the Electromagnetic-Acoustic Mirror-Shadow Method on Multiple Reflections in the Control of Bars. Defektoskopiya, (8), 36 – 51. [in Russian language] DOI: 10.31857/ S0130308222080048. EDN: BQEKGO.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2023.09.pp.027-041

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.09.pp.027-041

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования