Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2023, 12 декабрь (December)

DOI: 10.14489/td.2023.12.pp.054-059

Суржик Д. И.
ИССЛЕДОВАНИЕ МЕТОДА АВТОМАТИЧЕСКОЙ КОМПЕНСАЦИИ ТРЕНДОВЫХ СОСТАВЛЯЮЩИХ ФАЗОВЫХ СИГНАЛОВ В СИСТЕМАХ ФАЗОМЕТРИЧЕСКОГО КОНТРОЛЯ ГЕОДИНАМИЧЕСКИХ ПРОЦЕССОВ
(с. 54-59)

Аннотация. Для наблюдения и контроля за состоянием различных объектов, а также для обнаружения и оценки их изменений во времени широкое применение находит геодинамический мониторинг. Реализующие его программно-аппаратные комплексы слежения за геодинамикой объектов на протяжении длительных временных интервалов должны эффективно выделять в обрабатываемых данных трендовую составляющую. Перспективным способом осуществления геодинамического мониторинга является применение фазометрических методов геоэлектрического контроля. Структурная схема тракта выделения изменений фазы с использованием данных методов содержит дифференциальный усилитель, фазовый детектор, фильтр нижних частот и опорный высокостабильный генератор. Для устранения нежелательного постоянного фазового сдвига на основе данного метода предложено использовать метод автоматической компенсации, позволяющий осуществлять подстройку фазы системы в автоматическом режиме в масштабе реального времени. Результатом использования автокомпенсатора является формирование «новго» опорного сигнала для фазового детектора, исключающего образование в его выходном сигнале данных фазовых сдвигов. Для иллюстрации предложенного подхода рассмотрено использование программной реализации автоматической компенсации нежелательных сдвигов для выделения тренда в фазовых сигналах, полученных при геодинамическом мониторинге фундаментной зоны сооружения, показавшее его эффективность и возможность дальнейшего практического использования.

Ключевые слова:  геодинамический мониторинг, тренд, геоэлектрика, фазометрический метод, автоматическая компенсация.

 

Surzhik D. I.
INVESTIGATION OF THE METHOD OF AUTOMATIC COMPENSATION OF TREND COMPONENTS OF PHASE SIGNALS IN SYSTEMS OF PHASE-METRIC CONTROL OF GEODYNAMIC PROCESSES
(pp. 54-59)

Abstract. Geodynamic monitoring is widely used to monitor and control the state of various objects, as well as to detect and evaluate their changes over time. The software and hardware systems that implement it for tracking the geodynamics of objects over long time intervals should effectively highlight the trend component in the processed data. A promising way to implement geodynamic monitoring is the use of phase-metric methods of geoelectric control. The block diagram of the phase change detection path using these methods contains a differential amplifier, a phase detector, a low-pass filter, and a highly stable reference oscillator. To eliminate an undesirable constant phase shift based on this method, it is proposed to use an automatic compensation method that allows the system phase to be adjusted automatically in real time. The result of using the auto compensator is the formation of a "new" reference signal for the phase detector, excluding the formation of these phase shifts in its output signal. To illustrate the proposed approach, the use of software implementation of automatic compensation of unwanted shifts to identify a trend in phase signals obtained during geodynamic monitoring of the near-foundation zone of a structure is considered, which has shown its effectiveness and the possibility of further practical use.

Keywords: geodynamic monitoring, trend, geoelectrics, phase-metric method, automatic compensation.

Рус

Д. И. Суржик (Муромский институт (филиал) ФГБОУ ВО «Владимирский государственный университет им. А. Г. и Н. Г. Столетовых» (МИ ВлГУ), Муром, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

 D. I. Surzhik (Murom Institute (branch) of the Federal State Budgetary Educational Institution of Higher Education "Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletov" (MI VlSU), Murom, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Рус

1. Кузьмин Ю. О. Современная геодинамика и оценка геодинамического риска при недропользовании. М.: АЭН, 1999. 220 с.
2. Королев В. А. Мониторинг геологической среды. М.: Изд-во МГУ, 1995. 270 с.
3. Болдырев Г. Г., Живаев А. А. Геотехнический мониторинг // Инженерные изыскания. 2013. № 8. С. 40–45.
4. Хмелевской В. К., Горбачев Ю. И., Калинин А. В. и др. Геофизические методы исследований: учеб. пособие. Петропавловск-Камчатский: Изд-во КГПУ, 2004. 232 с.
5. Хмелевский В. К., Костицын В. И. Основы геофизических методов: учеб. для вузов. Пермь: Пермск. ун-т, 2010. 400 с.
6. Электроразведка: справочник геофизика: в 2 кн. / под ред. В. К. Хмелевского и В. М. Бондаренко. 2-е изд. М.: Недра, 1989.
7. Кузичкин О. Р. Программно-аппаратная организация электролокационных систем при геомониторинге карста // Проектирование и технология электронных средств. 2006. № 4. С. 54–58.
8. Vasilyev G. S., Kuzichkin O. R., Romanov R. V., et al. The Practice of Using a Multi-Pole Electrical Installation for Monitoring the Coastal Zone of Karst Lakes // 18th International Multidisciplinary Scientific Geoconference (SGEM 2018). Albena, Bulgaria, 2018. V. 18, Is. 1.2. P. 727–734.
9. Vasilyev G. S., Kuzichkin O. R., Baknin M. D., et al. Results of the Modeling of the Phase-Metric Method of the Control of the Development of Suffosion Processes // 18th International Multidisciplinary Scientific Geoconference (SGEM 2018). Albena, Bulgaria, 2018. Is. 5.2. P. 827–834.
10. Kuzichkin O., Grecheneva A., Mikhaleva E., et al. Application of Phase-Metric Measuring Systems for Geodynamic Control of Karst Processes // Journal of Engineering and Applied Sciences. 2017. V. 12, Is. Special. 4. P. 6858–6863. DOI: 10.3923/jeasci.2017.6858-6863
11. Курилов И. А., Кузичкин О. Р. Применение компенсационного метода контроля при геодинамическом мониторинге // Радиотехнические и телекоммуникационные системы. 2013. № 3. С. 50–58.
12. Савин С. Н. Современные методы технической диагностики строительных конструкций зданий и сооружений. СПб.: РДК-принт, 2000. 127 с.
13. Долматов Б. И. Механика грунтов, основания и фундаменты. 2-е изд. Л.: Стройизда, 1988. 415 с.
14. Martins N., Caetano E., Diord S., et al. Dynamic Monitoring of a Stadium Roof // Engineering Structures. 2014. V. 59. P. 80–94.

Eng

1. Kuz'min Yu. O. (1999). Modern geodynamics and assessment of geodynamic risk during subsoil use. Moscow: AEN. [in Russian language]
2. Korolev V. A. (1995). Monitoring of the geological environment. Moscow: Izdatel'stvo MGU. [in Russian language]
3. Boldyrev G. G., Zhivaev A. A. (2013). Geotechnical monitoring. Inzhenernye izyskaniya, (8), 40 – 45. [in Russian language]
4. Hmelevskoy V. K., Gorbachev Yu. I., Kalinin A. V. et al. (2004). Geophysical research methods: textbook. Petropavlovsk-Kamchatskiy: Izdatel'stvo KGPU. [in Russian language]
5. Hmelevskiy V. K., Kostitsyn V. I. (2010). Fundamentals of geophysical methods: textbook for universities. Perm': Permskiy universitet. [in Russian language]
6. Hmelevskiy V. K., Bondarenko V. M. (Eds.) (1989). Electrical prospecting: geophysics reference book: in 2 books. 2nd ed. Moscow: Nedra. [in Russian language]
7. Kuzichkin O. R. (2006). Software and hardware organization of electrolocation systems for geomonitoring of karst. Proektirovanie i tekhnologiya elektronnyh sredstv, (4), 54 – 58. [in Russian language]
8. Vasilyev G. S., Kuzichkin O. R., Romanov R. V. et al. (2018). The Practice of Using a Multipole Electrical Installation for Monitoring the Coastal Zone of Karst Lakes. 18th International Multidisciplinary Scientific Geoconference (SGEM 2018), 18(1.2), 727 – 734. Albena.
9. Vasilyev G. S., Kuzichkin O. R., Baknin M. D. et al. (2018). Results of the Modeling of the Phase-Metric Method of the Control of the Development of Suffosion Processes. 18th International Multidisciplinary Scientific Geoconference (SGEM 2018), (5.2), 827 – 834. Albena.
10. Kuzichkin O., Grecheneva A., Mikhaleva E. et al. (2017). Application of Phase-metric Measuring Systems for Geodynamic Control of Karst Processes. Journal of Engineering and Applied Sciences, 12(4), 6858 – 6863. DOI: 10.3923/jeasci.2017.6858-6863
11. Kurilov I. A., Kuzichkin O. R. (2013). Application of a compensatory control method in geodynamic monitoring. Radiotekhnicheskie i telekommunikatsionnye sistemy, (3), 50 – 58. [in Russian language]
12. Savin S. N. (2000). Modern methods of technical diagnostics of building structures of buildings and structures. Saint Petersburg: RDK-print. [in Russian language]
13. Dolmatov B. I. (1988). Soil mechanics, bases and foundations. 2nd ed. Leningrad: Stroyizda. [in Russian language]
14. Martins N., Caetano E., Diord S. et al. (2014). Dynamic Monitoring of a Stadium Roof. Engineering Structures, 59, 80 – 94.a Stadium Roof // Engineering Structures. 2014. V. 59. P. 80–94.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2023.12.pp.054-059

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.12.pp.054-059

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования