Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2023, 12 декабрь (December)

DOI: 10.14489/td.2023.12.pp.013-023

Федотов М. Ю., Васильев С. А.
МЕТОДИЧЕСКИЕ АСПЕКТЫ ОЦЕНКИ ЧУВСТВИТЕЛЬНОСТИ ВОЛОКОННЫХ БРЭГГОВСКИХ РЕШЕТОК К МЕХАНИЧЕСКОМУ И ТЕПЛОВОМУ ВОЗДЕЙСТВИЯМ ДЛЯ СИСТЕМ ОПТИЧЕСКОГО КОНТРОЛЯ ПОЛИМЕРНЫХ КОМПОЗИТОВ
(с. 13-23)

Аннотация. Рассмотрены физические принципы оптического контроля с использованием волоконно-оптических датчиков на основе волоконных брэгговских решеток по двум экспериментальным методикам. Для свободных волоконных брэгговских решеток, записанных в оптическом волокне, разработаны две новые экспериментальные методики по определению линейных и нелинейных коэффициентов чувствительности к деформации и температуре, а также перекрестного коэффициента чувствительности, который также необходимо учитывать при использовании квадратичной модели оптического контроля. С применением разработанных методик, учитывающих квадратичную модель оптического контроля полимерных композитных материалов, проведены экспериментальные исследования по оптическому контролю углекомпозитных образцов при испытаниях на статическое растяжение и температурное воздействие. По результатам экспериментальных исследований получены корреляционные зависимости относительного изменения резонансной длины волны волоконных брэгговских решеток в составе углекомпозита о деформации и температуры, а также проведена оценка перекрестного коэффициента чувствительности. Экспериментально показано, что  предложенный подход может быть адаптирован и широко применен для создания интегрированных волоконно-оптических систем оптического контроля конструкций в процессе стендовых испытаний и реальных условий эксплуатации.

Ключевые слова:  оптический неразрушающий контроль, углекомпозит, экспериментальная методика, волоконно-оптический датчик, волоконная брэгговская решетка, коэффициент чувствительности, деформация, температура.

 

Fedotov M. Yu., Vasiliev S. A.
METHODICAL ASPECTS OF EVALUATING THE SENSITIVITY OF FIBER BRAGG GRATINGS TO MECHANICAL AND THERMAL EFFECTS FOR OPTICAL TESTING SYSTEMS OF POLYMER COMPOSITES
(pp. 13-23)

Abstract. The physical principles of optical non-destructive testing using fiber-optic sensors based on fiber Bragg gratings are considered using two experimental methods. For free fiber Bragg gratings recorded in optical fiber, two new experimental techniques have been developed to determine the linear and nonlinear strain and temperature sensitivity coefficients, as well as the cross sensitivity coefficient, which must also be taken into account when using a quadratic optical control model. Using the developed methods, which take into account the quadratic model of the optical non-destructive testing of polymer composite materials, experimental researches were carried out on the optical non-destructive testing of carbon composite samples during tests for static tension and temperature effects. Based on the results of experimental researches, correlation dependences of the relative change in the resonant wavelength of the fiber Bragg grating in the composition of the carbon composite on deformation and temperature were obtained, and the cross-sensitivity coefficient was estimated. It has been experimentally shown that the proposed approach can be adapted and widely applied to create integrated fiber-optic systems for optical non-destructive testing of structures during bench tests and real operating conditions.

Keywords: optical non-destructive testing, carbon composite, experimental method, fiber optic sensor, fiber Bragg grating, sensitivity coefficient, strain, temperature.

Рус

М. Ю. Федотов (Институт автоматики и электрометрии Сибирского отделения Российской академии наук (ИАиЭ СО РАН), Новосибирск, Россия, Российская инженерная академия (РИА), Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
С. А. Васильев (Институт общей физики им. А.М. Прохорова РАН, Научный центр волоконной оптики им. Е.М. Дианова (ИОФ РАН, НЦВО РАН), Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

M. Yu. Fedotov (Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences (IA&E SB RAS), Novosibirsk, Russia, Russian Academy of Engineering (RAE), Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. A. Vasiliev (Prokhorov General Physics Institute of the Russian Academy of Sciences, Dianov Fiber Optics Research Center, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Ларин А. А., Федотов М. Ю., Бухаров С. В., Резниченко В. И. Новые области применения систем волоконно-оптических датчиков // Прикладная фотоника. 2017. Т. 4, № 4. С. 310–323.
2. Михайловский К. В., Базанов М. А. Измерение остаточных технологических деформаций в углепластике путем внедрения в него волоконных брэгговских решеток // Конструкции из композиционных материалов. 2016. № 2(142). С. 54–58.
3. Сорокин К. В., Гончаров В. А., Шиенок А. М., Федотов М. Ю. Возможности оптоволоконных сенсоров на основе брэгговских решеток в информкомпозитах для регистрации ударного воздействия // Все материалы. Энциклопедический справочник. 2013. № 12. С. 2–6.
4. Гончаров В. А., Федотов М. Ю., Шиенок А. М. и др. Моделирование инфузионных технологий изготовления слоистых полимерных композиционных материалов // Все материалы. Энциклопедический справочник. 2013. № 1. С. 43–49.
5. Kinet D., Mégret P., Goossen K. W., et al. Fiber Bragg Grating Sensors Toward Structural Health Monitoring in Composite Materials: Challenges and Solutions // Sensors. 2014. V. 14. P. 7394–7419. DOI: 10.3390/s140407394
6. Coricciati A., Corvaglia P., Largo A., et al. Smart Composite Device for Structural Health Monitoring // Advances in Science and Technology. 2013. V. 83. P. 138–143. DOI: 10.4028/www.scientific.net/AST.83.138
7. Далинкевич А. А., Михеев П. В., Гусев С. А. и др. Исследование микроструктурных влажностных деформаций в эпоксидном стеклопластике при тепловлажностной коррозии с помощью волоконно-оптических датчиков деформаций // Коррозия: материалы, защита. 2017. № 3. С. 42–46.
8. Будадин О. Н., Кутюрин В. Ю., Рыков А. Н., Гнусин П. И. Измерение деформаций с использованием волоконно-оптических датчиков в изделиях из углепластика при повышенных температурах // Контроль. Диагностика. 2019. № 9. С. 14–19. DOI: 10.14489/td.2019.09.pp.014-019
9. Measures R. M. Structural Monitoring with Fiber Optic Technology. Elsevier, 2001. 716 p.
10. Wenzel H. Health Monitoring of Bridges. John Wiley & Sons Ltd., 2009. 652 p.
11. Kashyap R. Fiber Bragg Gratings. 2nd ed. Elsevier Science, Academic Press, 2010. 614 p.
12. Nye J. F. Physical Properties of Crystals. Their Representation by Tensors and Matrices Oxford, 1957. 322 p.
13. Kersey A. D., Davis M. A., Patrick H. J., et al. Fiber Grating Sensors // Journal of Lightwave Technology. 1997. V. 15(8). Р. 1442–1463. DOI: 10.1109/50.618377
14. Медведков О. И., Королев И. Г., Васильев С. А. Запись волоконных брэгговских решеток в схеме с интерферометром Ллойда и моделирование их спектральных свойств. М.: НЦВО при ИОФ РАН, 2004. 46 с. (Препринт № 6 НЦВО при ИОФ РАН).
15. Kogelnik H. Theory of Optical-Waveguides // Guided Wave Optoelectronics. Part of the Springer Series in Electronics and Photonics Book Series (SSEP). Berlin: Springer-Verlag, 1988. V. 26. P. 7–88.
16. Федотов М. Ю., Гончаров В. А., Шиенок А. М., Сорокин К. В. Исследование изгибных деформаций углепластика оптоволоконными сенсорами на брэгговских решетках // Вопросы материаловедения. 2013. № 2(74). С. 139–147.
17. Федотов М. Ю. Теоретические исследования встроенной волоконно-оптической системы контроля деформации и температуры полимерных композитов // Контроль. Диагностика. 2023. Т. 26, № 5(299). С. 14-25. DOI: 10.14489/td.2023.05.pp.014-025
18. Black R. J., Moslehi B. High Temperature Fiber Bragg Gratings for Spacecraft Application // 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. Lausanne, 2018. P. WF106. DOI: 10.1364/OFS.2018.WF106
19. Budadin O., Kozelskaya S., Vavilov V., et al. Theoretical and Experimental Studies of Structural Health Monitoring of Carbon Composites with Integrated Optical Fiber Sensors Based on Fiber Bragg Gratings // Journal of Nondestructive Evaluation. 2021. V. 40, No. 4. DOI: 10.1007/s10921-021-00822-5

Eng

1. Larin A. A., Fedotov M. Yu., Buharov S. V., Reznichenko V. I. (2017). New Applications for Fiber Optic Sensor Systems. Prikladnaya fotonika, 4(4), 310 – 323. [in Russian language]
2. Mihaylovskiy K. V., Bazanov M. A. (2016). Measuring residual technological deformations in carbon fiber reinforced plastic by introducing fiber Bragg gratings into it. Konstruktsii iz kompozitsionnyh materialov, 142(2), 54 – 58. [in Russian language]
3. Sorokin K. V., Goncharov V. A., Shienok A. M., Fedotov M. Yu. (2013). Possibilities of optical fiber sensors based on Bragg gratings in information composites for recording impact impacts. Vse materialy. Entsiklopedicheskiy spravochnik, (12), 2 – 6. [in Russian language]
4. Goncharov V. A., Fedotov M. Yu., Shienok A. M. et al. (2013). Modeling of infusion technologies for the production of layered polymer composite materials. Vse materialy. Entsiklopedicheskiy spravochnik, (1), 43 – 49. [in Russian language]
5. Kinet D., Mégret P., Goossen K. W. et al. (2014). Fiber Bragg Grating Sensors Toward Structural Health Monitoring in Composite Materials: Challenges and Solutions. Sensors, 14, 7394 – 7419. DOI: 10.3390/s140407394
6. Coricciati A., Corvaglia P. A., Largo et al. (2013). Smart composite device for structural health monitoring. Advances in science and technology, 83, 138 – 143. DOI: 10.4028/www.scientific.net/AST.83.138
7. Dalinkevich A. A., Miheev P. V., Gusev S. A. et al. (2017). Study of microstructural moisture deformations in epoxy glass-plastic during heat-moisture corrosion using fiber-optic strain sensors. Korroziya: materialy, zashchita, (3), 42 – 46. [in Russian language]
8. Budadin O. N., Kutyurin V. Yu., Rykov A. N., Gnusin P. I. (2019). Measurement of strains in carbon-reinforced polymer composite products at elevated temperatures using fiber-optic sensors. Kontrol'. Diagnostika, (9), 14 – 19. [in Russian language] DOI: 10.14489/td.2019.09.pp.014-019
9. Measures R. M. (2001). Structural monitoring with fiber optic technology. Elsevier.
10. Wenzel H. (2009). Health Monitoring of Bridges. John Wiley & Sons Ltd.
11. Kashyap R. (2010). Fiber Bragg Gratings. 2nd ed. Elsevier Science, Academic press.
12. Nye J. F. (1957). Physical Properties of Crystals. Their representation by Tensors and Matrices Oxford.
13. Kersey A. D., Davis M. A., Patrick H. J. et al. (1997). Fiber Grating Sensors. Journal of Lightwave Technology, 15(8), 1442 – 1463. DOI: 10.1109/50.618377
14. Medvedkov O. I., Korolev I. G., Vasil'ev S. A. (2004). Recording fiber Bragg gratings in a circuit with a Lloyd interferometer and modeling their spectral properties. Moscow: NTsVO pri IOF RAN. (Preprint № 6 NTsVO pri IOF RAN). [in Russian language]
15. Kogelnik H. (1988). Theory of Optical-wave-guides. Guided Wave Optoelectronics. Part of the Springer Series in Electronics and Photonics Book Series (SSEP), 26, 7 – 88. Berlin: Springer-Verlag.
16. Fedotov M. Yu., Goncharov V. A., Shienok A. M., Sorokin K. V. (2013). Study of bending deformations of carbon fiber plastic using fiber-optic sensors on Bragg gratings. Voprosy materialovedeniya, 74(2), 139 – 147. [in Russian language]
17. Fedotov M. Yu. (2023). Theoretical researches of the embedded fiberoptic system of testing deformation and temperature of polymer composites. Kontrol'. Diagnostika, 26(5), 14 – 25. [in Russian language] DOI: 10.14489/td.2023.05.pp.014-025
18. Black R. J., Moslehi B. (2018). High Temperature Fiber Bragg Gratings for Spacecraft Application. 26th International Conference on Optical Fiber Sensors. Lausanne. DOI: 10.1364/OFS.2018.WF106
19. Budadin O., Kozelskaya S., Vavilov V. et al. (2021). Theoretical and Experimental Studies of Structural Health Monitoring of Carbon Composites with Integrated Optical Fiber Sensors Based on Fiber Bragg Gratings. Journal of Nondestructive Evaluation, 40(4). DOI: 10.1007/s10921-021-00822-5

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2018.01.pp.003-012

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.01.pp.003-012

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования