Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 11 | 2024
2023, 11 November

DOI: 10.14489/td.2023.11.pp.016-029

Makhov V. E., Shirobokov V. V., Emelyanov A. V., Petrushenko V. M.
METHODOLOGY FOR EVALUATING THE EFFECTIVENESS OF OPTOELECTRONIC SYSTEMS WHEN OBSERVING REMOTE SMALL-SIZED INCONSPICUOUS OBJECTS
(pp. 16-29)

Abstract. Aspects of the functioning of optical-electronic systems (OES) in the observation of remote, inconspicuous objects are considered. A technique has been developed for determining the effectiveness of the OES with an assessment of the results of observation of remote objects. A feature of the technique is the ability to identify and take into account the most significant factors that affect the result of the functioning of the OES: the characteristics of the brightness structure of the observed objects, the state of the radiation propagation path to the observation point, the circuitry of the optical system, and the parameters of the modes of the photodetector with a given topology. It is shown that the technique makes it possible to implement the optimal choice of algorithms for determining the coordinates and geometric features of inconspicuous objects. The practical application of the methodology makes it possible to more reliably assess the accuracy of coordinate information about remote objects, as well as to determine the degree of influence of various external and internal factors on the performance indicators of the OES, on the one hand, on the other hand, to form the main parameters of the system for given conditions of observation and solving target problems.

Keywords: scientific and methodological apparatus, optical-electronic system (OES), efficiency of OES, small-sized remote object, algorithms for obtaining coordinate information, continuous wavelet transform.

V. E. Makhov, V. V. Shirobokov, A. V. Emelyanov, V. M. Petrushenko (Mozhaisky Military Space Academy, Saint Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Mahov V. E., Petrushenko V. M., Zakutaev A. A. et al. (2020). Methods and means for constructing optical-electronic systems for monitoring remote objects. Komponenty i tekhnologii, (5), 94 – 99. [in Russian language]
2. Terebizh V. Yu. (2005). Modern optical telescopes. Moscow: Fizmatlit. [in Russian language]
3. Mahov V. E., Shirobokov V. V., Emel'yanov A. V., Potapov A. I. (2022). Investigation of an optoelectronic system for detecting small-sized and inconspicuous objectsunder the influence of geometric noise of a matrix photodetector. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, 19(11), 3 – 13. [in Russian language] DOI: 10.14489/vkit.2022.11.pp.003-013
4. Ermolaeva E. V., Zverev V. A., Filatov A. A. (2012). Adaptive optics. Saint Petersburg: NIU ITMO. [in Russian language]
5. Timofeev Yu. M., Vasil'ev A. V. (2007). Fundamentals of theoretical atmospheric optics. Saint Petersburg. [in Russian language]
6. Gertsev M. N. (2016). Reconstruction of molecular absorption cross sections from the HITRAN database. Preprinty IPM im. M. V. Keldysha, 19. [in Russian language]
7. Potapov A. I., Cherkasov V. N. (1992). Laser methods for remote monitoring of the atmosphere. Saint Petersburg: SZPI. [in Russian language]
8. Tymkul V. M., Tymkul L. V., Fes'ko Yu. A. et al. (2013). Methodology for calculating the magnitude of the International Space Station. Izvestiya vuzov. Priborostroenie, 56(5), 5 – 9. [in Russian language]
9. Zapryagaeva L. A. (2017). Applied optics. Part 1. Introduction to the theory of optical systems. Moscow: MIIGAiK. [in Russian language]
10. Gruzman I. S. Kirichuk V. S., Kosyh V. P. et al. (2000). Digital image processing in information systems. Novosibirsk: Izdatel'stvo NGTU. [in Russian language]
11. Litvinenko O. N. (1974). Fundamentals of radio optics. Kiev: Tekhnika. [in Russian language]
12. Rodionov S. A. (2000). Fundamentals of optics. Saint Petersburg: SPb GITMO (TU). [in Russian language]
13. Bok Y., Jeon H.-G., Kweon I. S. (2017). Geometric Calibration of Micro-Lensbased Light Field Cameras Using Line Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2), 287 – 300.
14. Mihel'son N. N. (1995). Optics of astronomical telescopes and methods of its calculation. Moscow: Fizmatlit. [in Russian language]
15. Zakaznov N. P. Kiryushin S. I. Kuzichev V. N. (1992). Theory of optical systems. 3rd ed. Moscow: Mashinostroenie. [in Russian language]
16. Kirillovskiy V. K., Tochilina T. V. (2012). Methods for research and quality control of optical systems. Saint Petersburg: NIU ITMO. [in Russian language]
17. Bokshanskiy V. B., Karasik V. E. (2001). Calculation of characteristics of photosensitive charge-coupled devices. Moscow. [in Russian language]
18. Andreev A. L., Korotaev V. V. (2010). Features of calculation of optical-electronic positioning systems based on readymade television modules. Izvestiya vuzov. Priborostroenie, 53(10), 69 – 75. [in Russian language]
19. Chausov E. V., Molchanov A. S., Min'ko R. N., Krasnov R. V. (2019). Main quality indicators of optical-electronic systems for remote monitoring of the Earth and methods for assessing them during testing. Vektor GeoNauk, 2(1), 60 – 67. [in Russian language]
20. Vol'f M., Born V. (1973). Fundamentals of optics. 2nd ed. Moscow: Nauka. [in Russian language]
21. Kirillovskiy V. K., Tuan Le Zuy. (2008). Optical measurements. Part 6. Innovative directions in optical measurements and research of optical systems. Saint Petersburg: SPb GU ITMO. [in Russian language]
22. Konyuhov A. L., Kostevich A. G., Kuryachiy M. I. (2012). Determination of the point spread function from characteristic image fragments. Doklady TUSURa, 26(2), part 1, 116 – 120. [in Russian language]
23. Mahov V. E. Potapov A. I. (2011). Using wavelet analysis to diagnose a technical vision system. Kontrol'. Diagnostika, (9), 11 – 18. [in Russian language]
24. Kirillovskiy V. K. (2005). Optical measurements. Part 4. Assessment of optical image quality and measurement of its characteristics. Saint Petersburg: SPb GU ITMO. [in Russian language]
25. Mahov V. E., Shaldaev S. E., Potapov A. I., Smorodinskiy Ya. G. (2020). The influence of image quality in optical-electronic systems on the accuracy of determining the parameters of objects under study. Defektoskopiya, (7), 28 – 43. [in Russian language]
26. Sviridov K. H., Tyulin A. E. (2022). Resolving Power and Linear Resolution for Quality Assessment and Design of Aerospace Earth Remote Sensing Systems. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 9(1), 9 – 29. [in Russian language]
27. Gorbachev A. A., Korotaev V. V., Yaryshev S. N. (2013). Solid-state matrix photoconverters and cameras based on them. Saint Petersburg: IU ITMO. [in Russian language]
28. Howell Steve B. (2000). Handbook of CCD Astronomy. Cambridge – New York: Cambridge University Press.
29. Kornilov V. The task of the astrophysical workshop. Study of a matrix CCD receiver. Retrieved from http://www.sai.msu.ru/ao/speccourses/posobiya/z09_CCD.pdf [in Russian language]
30. Pustynskiy I. N., Zaytseva E. V. (2009). Towards the calculation of image illumination and the number of signal electrons in a television sensor on a CCD matrix. Doklady TUSURa, 20(2), 5 – 110. [in Russian language]
31. Pustynskiy I. N., Zaytseva E. V. (2010). Towards a refinement of the estimate of the signal-to-noise ratio in a television sensor on a CCD matrix. Doklady TUSURa, 2(2), part 2, 180 – 182. [in Russian language]
32. Shanin O. I. (2013). Adaptive optical systems for tilt correction. Resonant adaptive optics. Moscow: Tekhnosfera. [in Russian language]
33. Zverev V. A., Kirillovskiy V. K., Sokol'skiy M. N. (1976). Application of the isophotometric photo recording method in research and certification of the main mirror of the BTA. OMP, (12), 513 – 519. [in Russian language]
34. Mahov V. E., Shirobokov V. V., Emel'yanov A. V., Potapov A. I. (2022). Investigation of algorithms of detecting of the characteristics of remote objects in optoelectronic systems by the method of wavelet transformation. Kontrol'. Diagnostika, 25(4), 20 – 31. [in Russian language] DOI: 10.14489/td.2022.04.pp.020-031
35. Mahov V. E., Petrushenko V. M., Emel'yanov A. V. et al. (2021). Technology for the development of software algorithms for optoelectronic monitoring systems for remote objects. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, 18, 208(10), 10 – 21. [in Russian language] DOI: 10.14489/vkit.2021.10.pp.010-021
36. Mahov V. E. (2009). Control and measuring system for studying the processes of high-temperature formation of powderfiring coatings. Konstruktsii iz kompozitsionnyh materialov, (2), 90 – 96. [in Russian language]
37. Dobeshi I. (2001). Ten lectures on wavelets. Izhevsk: NITs «Regulyarnaya i haoticheskhaya dinamika». [in Russian language]
38. Radkevich M. M., Evgrafov A. N. (Eds.), Mahov V. E. (2012). Study of the wavelet transformation algorithm for determining the coordinates of light marks in dilatometry. Materials of the 2nd International Scientific and Practical Conference “Modern Mechanical Engineering. Science and education", 490 – 499. Saint Petersburg: Izdatel'stvo Politekhnicheskogo universiteta. [in Russian language]
39. Mahov V. E., Shirobokov V. V., Emel'yanov A. V. et al. (2023). Optical-electronic system of high spatial resolution when observing remote objects. Kontrol'. Diagnostika, 26(1), 4 – 13. [in Russian language] DOI: 10.14489/td.2023.01.pp.004-013
40. Kozhevnikov D. A., Fedortsev R. V. (2017). Method for geometric calibration of optical-electronic systems based on an electronic test object. Pribory i metody izmereniy, 8(4), 374 – 385. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.11.pp.016-029

and fill out the  form  

 

 
Rambler's Top100 Яндекс цитирования