Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2024, 01 январь (January)

DOI: 10.14489/td.2024.01.pp.014-029

Муравьева О. В., Шихарев П. А., Мурашов С. А.
РАСПРОСТРАНЕНИЕ НОРМАЛЬНЫХ АКУСТИЧЕСКИХ ВОЛН В ВАЛАХ ЦЕНТРОБЕЖНЫХ НАСОСОВ С ПРОДОЛЬНЫМИ ТРЕЩИНАМИ ОСЕВЫХ ОТВЕРСТИЙ
(c. 14-29)

Аннотация. В процессе производства и эксплуатации валов центробежных насосов в их внутреннем диаметре возможно появление дефектов, которыми в подавляющем большинстве случаев являются продольные трещины. Такие дефекты влекут за собой полное разрушение силового агрегата центробежного насоса, задержку производства и большие экономические затраты, при этом их выявление магнитным, вихретоковым, капиллярным видами контроля зачастую исключено либо ограничено в силу малого внутреннего диаметра вала. Работа посвящена разработке новой методики, предназначенной для выявления дефектов осевых отверстий валов центробежных насосов c помощью совместного использования двух типов нормальных акустических волн – крутильной и стержневой. Методика построена на использовании эхоимпульсного и временного зеркально-теневого методов акустического неразрушающего контроля. В ходе работы проведены исследования по волноводному контролю трех групп валов, разбитых по критериям применяемых в работе методов, а также компьютерное моделирование, подтвержющее достоверность приведенных в работе результатов контроля. Предложено использовать новый информативный параметр – скорость крутильной волны дефектной части контролируемого образца. Результаты экспериментов и компьютерного моделирования методом конечных элементов показали высокую эффективность исследуемого метода и нелинейный характер зависимости распространения нормальных волн в валах относительно количества и размеров трещин осевых отверстий.

Ключевые слова:  волноводный акустический контроль, крутильные волны, стержневые волны, вал центробежного насоса, трубы, продольные трещины.

 

Muravyeva O. V., Shikharev P. A., Murashov S. A.
PROPAGATION OF GUIDED ACOUSTIC WAVES IN THE SHAFTS OF CENTRIFUGAL PUMPS WITH LONGITUDINAL CRACKS OF AXIAL HOLES
(pp. 14-29)

Abstract. During the production and operation of centrifugal pump shafts, defects may appear in their inner diameter, which in the vast majority of cases are longitudinal cracks. Such defects entail the complete destruction of the centrifugal pump power unit, production delay and high economic costs, while their detection by magnetic, eddy current, capillary types of testing is often excluded or limited due to the small internal diameter of the shaft. The work is devoted to the development of a new technique designed to detect defects in the axial holes of the shafts of centrifugal pumps by the combined use of two types of guided acoustic waves – torsional and longitudinal (rod). The technique is based on the use of echo-pulse and time-shadow methods of acoustic non-destructive testing. Within the work, studies were carried out on guided wave testing of three groups of shafts, divided according to the criteria of the methods used in the work, as well as computer modeling confirming the reliability of the testing result presented in the work. It is proposed to use a new informative parameter – the torsional wave velocity in the defective part of the tested sample. The results of experiments and computer modeling by the finite element method have shown the high efficiency of the studied method and the nonlinear nature of the dependence of the propagation of guided waves in the shafts relative to the number and size of cracks in axial holes.

Keywords: acoustic guided wave resting, torsional waves, rod waves, centrifugal pump shaft, pipes, axial cracks.

Рус

О. В. Муравьева (Ижевский государственный технический университет им. М. Т. Калашникова; Удмуртский федеральный исследовательский центр УрО РАН, Ижевск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
П. А. Шихарев, С. А. Мурашов (Ижевский государственный технический университет им. М. Т. Калашникова, Ижевск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

O. V. Muravyeva (Kalashnikov Izhevsk State Technical University, Izhevsk, Russia; Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences, Izhevsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
P. A. Shikharev, S. A. Murashov (Kalashnikov Izhevsk State Technical University, Izhevsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Sakthivel N. R., Nair B. B., Sugumaran V. Soft Computing Approach to Fault Diagnosis of Centrifugal Pump // Applied Soft Computing. 2012. V. 12, No. 5. P. 1574 – 1581. DOI: 10.1016/j.asoc.2011.12.009
2. Разработка и создание «Классификатора дефектов бесшовных горячекатанных труб производства ОАО «БМЗ – управляющая компания холдинга «БМК» / И. А. Ко¬валева, Н. А. Ходосовская, И. А. Гузова и др. // Литье и металлургия. 2013. № 3(72). С. 184 – 187. EDN SUDVYX.
3. Правосудович В. В. Дефекты стальных слитков и проката: справочник. М.: Интермет Инжиниринг, 2006. 382 с. EDN QMZRTZ.
4. Рожкова О. В. Дефекты на наружной поверхности горячекатаных бесшовных труб // Сталь. 2020. № 6. С. 36 – 38. EDN LNLTGJ.
5. Черных И. Н., Устьянцев В. Л., Литвинов М.А., Кривоногов И. Н. Изучение трансформации дефектов поверхности при производстве труб в условиях ТПА-80 // Вестник Южно-Уральского государственного университета. Сер. Металлургия. 2019. Т. 19, № 4. С. 27 – 36. EDN GHLNYV. DOI: 10.14529/met190404
6. Черных И. Н., Струин Д. О., Шкуратов Е. А. Определение технологических факторов прокатки, способствующих возникновению дефектов поверхности на трубах // Вестник Южно-Уральского государственного университета. Сер. Металлургия. 2018. Т. 18, № 3. С. 51 – 58. EDN UZMYFS. DOI: 10.14529/met180306
7. Rapur J. S., Tiwari R. Experimental Fault Diagnosis for Known and Unseen Operating Conditions of Centrifugal Pumps Using MSVM and WPT Based Analyses // Measurement. 2019. V. 147, Art. no. 106809. DOI: 10.1016/j.measurement.2019.07.037
8. Муравьева О. В., Муравьев В. В., Синцов М. А., Волкова Л. В. Выявляемость дефектов муфт насосно-компрессорных труб магнитным, вихретоковым и ультразвуковым многократно-теневым методами контроля // Дефектоскопия. 2022. № 4. С. 14 – 25. EDN BLAXOE. DOI: 10.31857/S0130308222040029
9. Буденков Г. А., Недзвецкая О. В., Лебедева Т. Н. Новая прогрессивная технология дефектоскопии протяженных объектов металлургической и добывающей промышленности // Тяжелое машиностроение. 2004. № 11. С. 28 – 30. EDN MPRUTV.
10. Муравьев В. В., Муравьева О. В., Платунов А. В. Акустическая тензометрия и структуроскопия тонких стальных проволок. Ижевск: Изд-во ИжГТУ им. М. Т. Калашникова, 2016. 107 с. EDN YLCNFJ.
11. Ghavamian A., Mustapha F., Baharudin B. T. H. T., Yidris N. Detection, Localisation and Assessment of Defects in Pipes Using Guided Wave Techniques: A Review // Sensors. 2018. Vol. 18, No. 12, Art. no. 4470. DOI: 10.3390/s18124470
12. Guan R., Lu Y., Duan W., Wang X. Guided Waves for Damage Identification in Pipeline Structures: A Review // Structure Control and Health Monitoring. 2017. Vol. 24, No. 11. P. 1 – 17. Art. no. e2007. DOI: 10.1002/stc.2007
13. Zang X., Xu Z.-D., Lu H., Zhu C., Zhang Z. Ultrasonic Guided Wave Techniques and Applications in Pipeline Defect Detection: A Review // International Journal of Pressure Vessels and Piping. 2023. V. 206, Art. no. 105033. DOI: 10.1016/j.ijpvp.2023.105033
14. Стрижак В. А, Пряхин А. В., Хасанов Р. Р., Мкртчян С. С. Дефектоскопия композитной арматуры акустическим волноводным методом // Вестник ИжГТУ им. М. Т. Калашникова. 2019. Т. 22, № 1. С. 78 – 88. EDN ZBAFKH.
15. Стрижак В. А, Хасанов Р. Р., Пряхин А. В. Особенности возбуждения электромагнитно-акустического преобразователя при волноводном методе контроля // Вестник ИжГТУ им. М. Т. Калашникова. 2018. Т. 21, № 2. С. 159 – 166. EDN XPTZXN.
16. Стрижак В. А. Стенд для определения зависимости скорости стержневой волны от температуры в металлических прутках // Контроль. Диагностика. 2023. Т. 26, № 3(297). С. 40 – 49. EDN WMUCGO. DOI: 10.14489/td.2023.03.pp.040-049
17. Стрижак В. А. Акустический контроль прутков композитной арматуры с учетом процента армирования // Дефектоскопия. 2022. № 10. С. 37 – 48. EDN BTDEBK. DOI: 10.31857/S0130308222100049
18. Liu K. H., Wu Z. J., Jiang Y. Q., et al. Guided Waves Based Diagnostic Imaging of Circumferential Cracks in Small-Diameter Pipe // Ultrasonics. 2016. V. 65. P. 34 – 42. DOI: 10.1016/j.ultras.2015.10.025
19. Heinlein S., Cawley P., Vogt T. K. Reflection of Torsional T(0, 1) Guided Waves from Defects in Pipe Bends // NDT & E International. 2018. V. 93. P. 57 – 63. DOI: 10.1016/j.ndteint.2017.09.007
20. Lee J., Achenbach J. D., Cho Y. Use of the Reciprocity Theorem for a Closed Form Solution of Scattering of the Lowest Axially Symmetric Torsional Wave Mode by a Defect in a Pipe // Ultrasonics. 2018. V. 84. P. 45 – 52. DOI: 10.1016/j.ultras.2017.10.011
21. Ma S. Y., Wu Z. J., Wang Y. S., Liu K. H. The Reflection of Guided Waves from Simple Dents in Pipes // Ultrasonics. 2015. V. 57. P. 190 – 197. DOI: 10.1016/j.ultras.2014.11.012
22. Teoh C. Y., Pang J. S., Hamid M. N. A., et al. Ultrasonic Guided Wave Testing on Pipeline Corrosion Detection Using Torsional T(0, 1) Guided Waves // Journal of Mechanical Engineering and Sciences. 2022. V. 16, No. 4. P. 9157 – 9166. DOI: 10.15282/jmes.16.4.2022.01.0725
23. Velichko A., Wilcox P. D. Excitation and Scattering of Guided Waves: Relationships between Solutions for Plates and Pipes // The Journal of the Acoustical Society of America. 2009. V. 125, No. 6. P. 3623 – 3631. DOI: 10.1121/1.3117441
24. Zhang X. W., Tang Z. F., Lv F. Z., Yang K. J. Scattering of Torsional Flexural Guided Waves from Circular Holes and Crack-Like Defects in Hollow Cylinders // NDT & E International. 2017. V. 89. P. 56 – 66. DOI: 10.1016/j.ndteint.2017.03.007
25. Kim Y.-W., Park K.-J. Application of Chirplet Transform for Detecting Axial Cracks in Pipes Using Torsional Guided Modes // Insight. 2017. V. 59, No. 3. P. 138 – 143. DOI: 10.1784/insi.2017.59.3.138
26. Kim Y.-W., Park K.-J. Characterization of Axial and Oblique Defects in Pipes. Using Fundamental Torsional Guided Modes // NDT & E International. 2017. V. 92. P. 149 – 158. DOI: 10.1016/j.ndteint.2017.08.006
27. Kim Y.-W., Park K.-J. The Interaction of Fundamental Torsional Guided Waves from Axial and Oblique Defects in Pipes // Insight. 2021. V. 63, No. 6. P. 334 – 340. DOI: 10.1784/insi.2021.63.6.334
28. Liu Z., He C., Wu B., et al. Circumferential and Longitudinal Defect Detection Using T(0, 1) Mode Excited by Thickness Shear Mode Piezoelectric Elements // Ultrasonics. 2006. V. 44, Suppl. P. e1135 – e1138. DOI: 10.1016/j.ultras.2006.05.154
29. Ratassepp M., Fletcher S., Lowe M. J. S. Scattering of the Fundamental Torsional Mode at an Axial Crack in a Pipe // The Journal of the Acoustical Society of America. 2010. V. 127, No. 2. P. 730 – 740. DOI: 10.1121/1.3277185
30. Rodgers E. C., Mariani S., Cawley P. The Use of Circumferential Guided Waves to Monitor Axial Cracks in Pipes // Structural Health Monitoring. An International Journal. 2023. V. 22, No. 4. P. 2609 – 2625. DOI: 10.1177/14759217221130939
31. Fang Z. A Review of Non-Axisymmetric Guided Waves and Their Corresponding Transducers for Defect Detection in Circular Tube Structures // Smart Materials and Structures. 2023. V. 32, No. 6. Art. no. 063001. DOI: 10.1088/1361-665X/accc19
32. Fang Z., Tse P. W., Xu F. The Application of a Reflected Non-Axisymmetric Torsional Guided Wave model for Imaging Crack-Like Defects in Small-Diameter Pipes // Measurement Science and Technology. 2020. V. 32, No. 3. Art. no. 035405. DOI: 10.1088/1361-6501/abccdf
33. Fang Z, Tse P. W. Demagnetization-Based Axial Magnetized Magnetostrictive Patch Transducers for Locating Defect in Small-Diameter Pipes Using the Non-Axisymmetric Guided Wave // Structural Health Monitoring. 2019. V. 18, No. 5–6. P. 1738 – 1760. DOI: 10.1177/1475921719833471
34. Nurmalia, Nakamura N., Ogi H., Hirao M. EMAT Pipe Inspection Technique Using Higher Mode Torsional Guided Wave T(0, 2) // NDT & E International. 2017. V. 87. P. 78 – 84. DOI: 10.1016/j.ndteint.2017.01.009
35. Chang Y., Zi Y., Zhao J., et al. An Adaptive Sparse Deconvolution Method for Distinguishing the Overlapping Echoes of Ultrasonic Guided Waves for Pipeline Crack Inspection // Measurement Science and Technology. 2017. V. 28, No. 3. Art. no. 035002. DOI: 10.1088/1361-6501/aa52ae
36. Mahal H. N., Yang K., Nandi A. K. Detection of Defects Using Spatial Variances of Guided-Wave Modes in Testing of Pipes // Applied Sciences. 2018. V. 8, No. 12. Art. no. 2378. DOI: 10.3390/app8122378
37. Mahal H. N. Signal Processing Techniques for Enhancement of Defect Detection in Ultrasonic Guided Waves Inspection of Pipelines: Doctor of Philosophy Thesis. London: Brunel University, 2020. URL: http://bura.brunel.ac.uk/handle/2438/20932
38. Diogo A. R., Moreira B., Gouveia C. A. J., Tavares J. M. R. S. A Review of Signal Processing Techniques for Ultrasonic Guided Wave Testing // Metals. 2022. V. 12, No. 6. Art. no. 936. DOI: 10.3390/met12060936
39. Yeung C., Ng C. T. Nonlinear Guided Wave Mixing in Pipes for Detection of Material Nonlinearity // Journal of Sound and Vibration. 2020. V. 485. Art. no. 115541. DOI: 10.1016/j.jsv.2020.115541
40. Муравьева О. В., Мурашов С. А. Использование крутильных волн при выявлении эксплуатационных дефектов насосных штанг и насосно-компрессорных труб // Вестник Ижевского государственного технического университета. 2011. № 2(50). С. 149 – 154. EDN TWNAWD.
41. Мурашов С. А., Коробейникова О. В. Основные параметры акустического контроля протяженных объектов различного профиля с использованием крутильных волн // Вестник Ижевского государственного технического университета. 2010. № 2(46). С. 84 – 88. EDN MNHYSP.
42. Акустический волноводный контроль линейно-протяженных объектов / О. В. Муравьева, В. В. Муравьев, В. А. Стрижак и др. Новосибирск: Изд-во СО РАН, 2017. 234 с. EDN YUHZJR.
43. Буденков Г. А., Недзвецкая О. В., Злобин Д. В., Лебедева Т. Н. Эффективность использования стержневых и крутильных волн для контроля пруткового проката // Дефектоскопия. 2004. № 3. С. 3 – 8. EDN PARQND.
44. Влияние фактора разных плавок при производстве пруткового проката на скорости акустических волн / О. В. Муравьева, В. В. Муравьев, М. А. Синцов и др. // Приборостроение в XXI веке – 2017. Интеграция науки, образования и производств: сб. матер. XIII Междунар. науч.-техн. конф., Ижевск, 22 – 24 ноября 2017 г. Ижевск: Ижевский гос. техн. ун-т им. М. Т. Калашникова, 2018. С. 269 – 278. EDN YVDIPR.

Eng

1. Sakthivel N. R., Nair B. B., Sugumaran V. (2012). Soft Computing Approach to Fault Diagnosis of Centrifugal Pump. Applied Soft Computing, 12(5), 1574 – 1581. DOI: 10.1016/j.asoc.2011.12.009
2. Kovaleva I. A., Hodosovskaya N. A., Guzova I. A. et al. (2013). Development and creation of a “Classifier of defects in seamless hot-rolled pipes produced by OJSC BMZ - the management company of the BMK holding”. Lit'e i metallurgiya, 72(3), 184 – 187. [in Russian language] EDN SUDVYX.
3. Pravosudovich V. V. (2006). Defects in steel ingots and rolled products: a handbook. Moscow: Intermet Inzhiniring. [in Russian language] EDN QMZRTZ.
4. Rozhkova O. V. (2020). Defects on the outer surface of hot-rolled seamless pipes. Stal', (6), 36 – 38. [in Russian language] EDN LNLTGJ.
5. Chernyh I. N., Ust'yantsev V. L., Litvinov M.A., Krivonogov I. N. (2019). Study of the transformation of surface defects during pipe production under TPA-80 conditions. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya Metallurgiya, 19(4), 27 – 36. [in Russian language] EDN GHLNYV. DOI: 10.14529/met190404
6. Chernyh I. N., Struin D. O., Shkuratov E. A. (2018). Determination of rolling technological factors that contribute to the occurrence of surface defects on pipes. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya Metallurgiya, 18(3), 51 – 58. [in Russian language] EDN UZMYFS. DOI: 10.14529/met180306
7. Rapur J. S., Tiwari R. (2019). Experimental Fault Diagnosis for Known and Unseen Operating Conditions of Centrifugal Pumps Using MSVM and WPT Based Analyses. Measurement, 147. DOI: 10.1016/j.measurement.2019.07.037
8. Murav'eva O. V., Murav'ev V. V., Sintsov M. A., Volkova L. V. (2022). Detection of defects in tubing couplings using magnetic, eddy current and ultrasonic multiple shadow testing methods. Defektoskopiya, (4), 14 – 25. [in Russian language] EDN BLAXOE. DOI: 10.31857/S0130308222040029
9. Budenkov G. A., Nedzvetskaya O. V., Lebedeva T. N. (2004). New advanced technology for flaw detection of extended objects in the metallurgical and mining industries. Tyazheloe mashinostroenie, (11), 28 – 30. [in Russian language] EDN MPRUTV.
10. Murav'ev V. V., Murav'eva O. V., Platunov A. V. (2016). Acoustic strain gauging and structuroscopy of thin steel wires. Izhevsk: Izdatel'stvo IzhGTU im. M. T. Kalashnikova. [in Russian language] EDN YLCNFJ.
11. Ghavamian A., Mustapha F., Baharudin B. T. H. T., Yidris N. (2018). Detection, Localisation and Assessment of Defects in Pipes Using Guided Wave Techniques: a review. Sensors, 18(12). DOI: 10.3390/s18124470
12. Guan R., Lu Y., Duan W., Wang X. (2017). Guided Waves for Damage Identification in Pipeline Structures: a review. Structure Control and Health Monitoring, 24(11), 1 – 17. DOI: 10.1002/stc.2007
13. Zang X., Xu Z.-D., Lu H., Zhu C., Zhang Z. (2023). Ultrasonic Guided Wave Techniques and Applications in Pipeline Defect Detection: a review. International Journal of Pressure Vessels and Piping, 206. DOI: 10.1016/j.ijpvp.2023.105033
14. Strizhak V. A., Pryahin A. V., Hasanov R. R., Mkrtchyan S. S. (2019). Flaw detection of composite reinforcement using the acoustic waveguide method. Vestnik IzhGTU im. M. T. Kalashnikova, 22(1), 78 – 88. [in Russian language] EDN ZBAFKH.
15. Strizhak V. A., Hasanov R. R., Pryahin A. V. (2018). Features of excitation of an electromagnetic-acoustic transducer using the waveguide testing method. Vestnik IzhGTU im. M. T. Kalashnikova, 21(2), 159 – 166. [in Russian language] EDN XPTZXN.
16. Strizhak V. A. (2023). Stand for determining the dependence of the rod wave velocity on the temperature in metal bars. Kontrol'. Diagnostika, 26, 297(3), 40 – 49. [in Russian language] DOI: 10.14489/td.2023.03.pp.040-049. EDN WMUCGO.
17. Strizhak V. A. (2022). Acoustic testing of composite reinforcement bars taking into account the percentage of reinforcement. Defektoskopiya, (10), 37 – 48. [in Russian language] DOI: 10.31857/S0130308222100049. EDN BTDEBK.
18. Liu K. H., Wu Z. J., Jiang Y. Q. et al. (2016). Guided Waves Based Diagnostic Imaging of Circumferential Cracks in Small-Diameter Pipe. Ultrasonics, 65, 34 – 42. DOI: 10.1016/j.ultras.2015.10.025
19. Heinlein S., Cawley P., Vogt T. K. (2018). Reflection of Torsional T(0, 1) Guided Waves from Defects in Pipe Bends. NDT & E International, 93, 57 – 63. DOI: 10.1016/j.ndteint.2017.09.007
20. Lee J., Achenbach J. D., Cho Y. (2018). Use of the Reciprocity Theorem for a Closed form Solution of Scattering of the Lowest Axially Symmetric Torsional Wave Mode by a Defect in a Pipe. Ultrasonics, 84, 45 – 52. DOI: 10.1016/j.ultras.2017.10.011
21. Ma S. Y., Wu Z. J., Wang Y. S., Liu K. H. (2015). The Reflection of Guided Waves from Simple Dents in Pipes. Ultrasonics, 57, 190 – 197. DOI: 10.1016/j.ultras.2014.11.012
22. Teoh C. Y., Pang J. S., Hamid M. N. A. et al. (2022). Ultrasonic Guided Wave Testing on Pipeline Corrosion Detection Using Torsional T(0, 1) Guided Waves. Journal of Mechanical Engineering and Sciences, 16(4), 9157 – 9166. DOI: 10.15282/jmes.16.4.2022.01.0725
23. Velichko A., Wilcox P. D. (2009). Excitation and Scattering of Guided Waves: Relationships between Solutions for Plates and Pipes. The Journal of the Acoustical Society of America, 125(6), 3623 – 3631. DOI: 10.1121/1.3117441
24. Zhang X. W., Tang Z. F., Lv F. Z., Yang K. J. (2017). Scattering of Torsional Flexural Guided Waves from Circular Holes and Crack-Like Defects in Hollow Cylinders. NDT & E International, 89, 56 – 66. DOI: 10.1016/j.ndteint.2017.03.007
25. Kim Y.-W., Park K.-J. (2017). Application of Chirplet Transform for Detecting Axial Cracks in Pipes using Torsional Guided Modes. Insight, 59(3), 138 – 143. DOI: 10.1784/insi.2017.59.3.138
26. Kim Y.-W., Park K.-J. (2017). Characterization of Axial and Oblique Defects in Pipes. Using Fundamental Torsional Guided Modes. NDT & E International, 92, 149 – 158. DOI: 10.1016/j.ndteint.2017.08.006
27. Kim Y.-W., Park K.-J. (2021). The Interaction of Fundamental Torsional Guided Waves from Axial and Oblique Defects in Pipes. Insight, 63(6), 334 – 340. DOI: 10.1784/insi.2021.63.6.334
28. Liu Z., He C., Wu B. et al. (2006). Circumferential and Longitudinal Defect Detection Using T(0, 1) Mode Excited by Thickness Shear Mode Piezoelectric Elements. Ultrasonics, 44, e1135 – e1138. DOI: 10.1016/j.ultras.2006.05.154
29. Ratassepp M., Fletcher S., Lowe M. J. S. (2010). Scattering of the Fundamental Torsional Mode at an Axial Crack in a Pipe. The Journal of the Acoustical Society of America, 127(2), 730 – 740. DOI: 10.1121/1.3277185
30. Rodgers E. C., Mariani S., Cawley P. (2023). The Use of Circumferential Guided Waves to Monitor Axial Cracks in Pipes. Structural Health Monitoring. An International Journal, 22(4), 2609 – 2625. DOI: 10.1177/14759217221130939
31. Fang Z. (2023). A Review of Non-Axisymmetric Guided Waves and Their Corresponding Transducers for Defect Detection in Circular Tube Structures. Smart Materials and Structures, 32(6). DOI: 10.1088/1361-665X/accc19
32. Fang Z., Tse P. W., Xu F. (2020). The Application of a Reflected Non-Axisymmetric Torsional Guided Wave model for Imaging Crack-Like Defects in Small-Diameter Pipes. Measurement Science and Technology, 32(3). DOI: 10.1088/1361-6501/abccdf
33. Fang Z, Tse P. W. (2019). Demagnetization-Based Axial Magnetized Magnetostrictive Patch Transducers for Locating Defect in Small-Diameter Pipes Using the Non-Axisymmetric Guided Wave. Structural Health Monitoring, 18(5–6), 1738 – 1760. DOI: 10.1177/1475921719833471
34. Nurmalia, Nakamura N., Ogi H., Hirao M. (2017). EMAT Pipe Inspection Technique Using Higher Mode Torsional Guided Wave T(0, 2). NDT & E International, 87, 78 – 84. DOI: 10.1016/j.ndteint.2017.01.009
35. Chang Y., Zi Y., Zhao J. et al. (2017). An Adaptive Sparse Deconvolution Method for Distinguishing the Overlapping Echoes of Ultrasonic Guided Waves for Pipeline Crack Inspection. Measurement Science and Technology, 28(3). DOI: 10.1088/1361-6501/aa52ae
36. Mahal H. N. Yang K., Nandi A. K. (2018). Detection of Defects Using Spatial Variances of Guided-Wave Modes in Testing of Pipes. Applied Sciences, 8(12). DOI: https://doi.org/10.3390/app8122378
37. Mahal H. N. (2020). Signal Processing Techniques for Enhancement of Defect Detection in Ultrasonic Guided Waves Inspection of Pipelines: Doctor of Philosophy thesis. London: Brunel University. Retrieved from http://bura.brunel.ac.uk/handle/2438/20932
38. Diogo A. R., Moreira B., Gouveia C. A. J., Tavares J. M. R. S. (2022). A Review of Signal Processing Techniques for Ultrasonic Guided Wave Testing. Metals, 12(6). DOI: 10.3390/met12060936
39. Yeung C., Ng C. T. (2020). Nonlinear Guided Wave Mixing in Pipes for Detection of Material Nonlinearity. Journal of Sound and Vibration, 485. DOI: 10.1016/j.jsv.2020.115541
40. Murav'eva O. V., Murashov S. A. (2011). The use of torsional waves in identifying operational defects in sucker rods and tubing. Vestnik Izhevskogo gosudarstvennogo tekhnicheskogo universiteta, 50(2), 149 – 154. [in Russian language] EDN: TWNAWD.
41. Murashov S. A., Korobeynikova O. V. (2010). Basic parameters of acoustic testing of extended objects of various profiles using torsional waves. Vestnik Izhevskogo gosudarstvennogo tekhnicheskogo universiteta, 46(2), 84 – 88. [in Russian language] EDN MNHYSP.
42. Murav'eva O. V., Murav'ev V. V., Strizhak V. A. et al. (2017). Acoustic waveguide testing of linearly extended objects. Novosibirsk: Izdatel'stvo SO RAN. [in Russian langauge] EDN YUHZJR.
43. Budenkov G. A., Nedzvetskaya O. V., Zlobin D. V., Lebedeva T. N. (2004). Efficiency of using rod and torsional waves for inspection of rolled rods. Defektoskopiya, (3), 3 – 8. [in Russian langauge] EDN PARQND.
44. Murav'eva O. V., Murav'ev V. V., Sintsov M. A. et al. (2018). The influence of the factor of different heats in the production of rolled rods on the speed of acoustic waves. Instrument making in the XXI century - 2017. Integration of science, education and production: collection of materials of the XIII International Scientific and Technical Conference, 269 – 278. Izhevsk: Izhevskiy gosudarstvenniy tekhnicheskiy universitet im. M. T. Kalashnikova. [in Russian language] EDN YVDIPR.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2024.01.pp.014-029

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.01.pp.014-029

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования