DOI: 10.14489/td.2024.01.pp.004-013
Федотов М. Ю. МОДЕЛИРОВАНИЕ ТЕРМОКОМПЕНСАЦИИ ДАННЫХ ОПТИЧЕСКОГО КОНТРОЛЯ КОМПОЗИТНЫХ КОНСТРУКЦИЙ ВНЕШНИМ ВОЛОКОННО-ОПТИЧЕСКИМ ДАТЧИКОМ ТЕМПЕРАТУРЫ (c. 4-13)
Аннотация. Рассмотрены теоретические аспекты термокомпенсации данных оптического неразрушающего контроля деформации конструкций из полимерных композитных материалов с использованием волоконно-оптических датчиков на основе волоконных брэгговских решеток. Показано, что на этапе проведения стендовых испытаний композитных конструкций может быть успешно применен метод термокомпенсации с использованием внешнего датчика температуры. Проанализированы и обобщены линейные и квадратичная математические модели термокомпенсации. Установлено, что при сравнительной простоте реализации данного метода термокомпенсации также обеспечивается погрешность определения деформации на уровне погрешности опросного устройства. Однако для онлайн-контроля композитных конструкций в процессе эксплуатации применение данного метода затруднено, ввиду того что размещение внешнего датчика температуры далеко не всегда возможно. Предложенный метод и соответствующие модели могут быть применены на практике для разработки методик оптического контроля образцов и конструкций из полимерных композитных материалов в процессе стендовых и иных испытаний с учетом термокомпенсации.
Ключевые слова: полимерный композитный материал, композитная конструкция, оптический неразрушающий контроль, волоконно-оптический датчик, волоконная брэгговская решетка, термокомпенсация данных, метод внешнего датчика температуры, модель термокомпенсации, погрешность оптического контроля.
Fedotov M. Yu. SIMULATION OF THERMAL COMPENSATION OF OPTICAL TESTING DATA OF COMPOSITE STRUCTURES BY AN EXTERNAL FIBER-OPTIC TEMPERATURE SENSOR (pp. 4-13)
Abstract. This article describes the theoretical aspects of thermal compensation of data from optical non-destructive testing of deformation of structures made of polymer composite materials using fiber-optic sensors based on fiber Bragg gratings. It is shown that at the stage of bench testing of composite structures, the method of thermal compensation using an external temperature sensor can be successfully applied. Linear and quadratic mathematical models of thermal compensation are analyzed and generalized. It has been established that with the comparative simplicity of the implementation of this method of thermal compensation, the error in determining the deformation is also provided at the level of the error of the interrogator. However, for online testing of composite structures during operation, the use of this method is difficult, due to the fact that the placement of an external temperature sensor is not always possible. The proposed method and the corresponding models can be applied in practice to develop methods for optical testing of samples and structures made of polymer composite materials during bench and other tests, taking into account thermal compensation.
Keywords: polymer composite material, composite structure, optical non-destructive testing, fiber optic sensor, fiber Bragg grating, data temperature compensation, external temperature sensor method, temperature compensation model, optical testing error.
М. Ю. Федотов (ИАиЭ СО РАН, Новосибирск, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
M. Yu. Fedotov (Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Kesarwani S. Polymer Composites in Aviation Sector // International Journal of Engineering Research & Technology. 2017. V. 6, No. 6. P. 518 – 525. DOI: 10.17577/IJERTV6IS060291 2. Особенности создания полимерных композиционных материалов с интегрированной активной электромеханической актюаторной системой на основе пьезоэлектриков / Д. В. Сиваков, И. Н. Гуляев, К. В. Сорокин и др. // Авиационные материалы и технологии. 2011. № 1(18). С. 31 – 34. EDN RNECUX. 3. Моделирование инфузионных технологий изготовления слоистых полимерных композиционных материалов / В. А. Гончаров, М. Ю. Федотов, А. М. Шиенок и др. // Все материалы. Энциклопедический справочник. 2013. № 1. С. 43 – 49. EDN QABDDV. 4. Орлов Ф. А. Применение композиционных материалов в конструкции самолета МС-21 // Технологические инновации и научные открытия: сб. ст. по матер. Междунар. науч.-практ. конф., Уфа, 2 декабря 2019 г. Уфа: НИЦ «Вестник науки», 2019. С. 43 – 48. EDN RXRBZA. 5. Parveez B., Kittur M. I., Badruddin I. A., et al. Scientific Advancements in Composite Materials for Aircraft Applications: A Review // Polymers. 2022. V. 14, No. 22. P. 5007. DOI: 10.3390/polym14225007 6. Nayak N. V. Composite Materials in Aerospace Applications // International Journal of Scientific and Research Publications. 2014. V. 4, No. 9. 10 p. 7. Mashayekhi F., Bardon J., Berthe V., et al. Fused Filament Fabrication of Polymers and Continuous Fiber-Reinforced Polymer Composites: Advances in Structure Optimization and Health Monitoring // Polymers. 2021. V. 13, No. 5. P. 789. DOI: 10.3390/polym13050789 8. Rajan G., Ramakrishnan M., Semenova Yu., et al. Experimental Study and Analysis of a Polymer Fiber Bragg Grating Embedded in a Composite Material // Journal of Lightwave Technology. 2014. V. 32, No. 9. P. 1726 – 1733. DOI: 10.1109/JLT.2014.2311441 9. Матвеенко В. П. Новые возможности при проектировании СПС: пробионические конструкции, smart-материалы, интеллектуальный мониторинг // Фундаментальные проблемы создания СПС нового поколения: сб. тез. выездной секции Междунар. школы-семинара, Сочи, 9 – 11 июня 2021 г. М.: Центральный аэрогидродинамический институт им. проф. Н. Е. Жуковского, 2021. С. 14 – 18. EDN ZFNTEY. 10. Матвеенко В. П., Кошелева Н. А., Сероваев Г. С. Экспериментальные и теоретические результаты, связанные с измерением деформаций, встроенными в материал волоконно-оптическими датчиками на брэгговских решетках // Известия Российской академии наук. Механика твердого тела. 2021. № 6. С. 3 – 15. EDN BRLEGB. DOI: 10.31857/S0572329921060088 11. Fedorov A. Yu., Kosheleva N. A., Matveenko V. P., Serovaev G. S. Strain Measurement and Stress Analysis in the Vicinity of a Fiber Bragg Grating Sensor Embedded in a Composite Material // Composite Structures. 2020. V. 239. P. 111844. EDN OFCCAW. DOI: 10.1016/j.compstruct.2019.111844 12. Исследование длительного водопоглощения конструкционных эпоксидных стеклопластиков с помощью волоконно-оптических датчиков деформаций / А. А. Далинкевич, П. В. Михеев, С. А. Гусев и др. // Север России: стратегии и перспективы развития: матер. II Всерос. науч.-практ. конф., Сургут, 27 мая 2016 г. Т. 2. Сургут: Сургутский гос. ун-т, 2016. С. 67 – 71. EDN ZAJUMN. 13. Применение волоконно-оптических датчиков деформаций для исследования микроструктурных изменений в конструкционных эпоксидных стеклопластиках при воздействии природных факторов старения / А. А. Да¬линкевич, П. В. Михеев, С. А. Гусев и др. // Север России: стратегии и перспективы развития: матер. II Всерос. науч.-практ. конф., Сургут, 27 мая 2016 г. Т. 2. Сургут: Сургутский гос. ун-т, 2016. С. 71 – 76. EDN ZAJUMX. 14. Новые области применения систем волоконно-оптических датчиков / А. А. Ларин, М. Ю. Федотов, С. В. Бухаров и др. // Прикладная фотоника. 2017. Т. 4, № 4. С. 310 – 323. EDN YXRLAD. 15. Tanaka N., Okabe Y., Takeda N. Temperature-Compensated Strain Measurement Using FBG Sensors Embedded in Composite Laminates // Smart Materials and Structures. 2003. V. 12, No. 6. P. 940 – 946. DOI: 10.1088/0964-1726/12/6/011 16. Liang Z., Liu D., Wang X., et al. FBG-Based Strain Monitoring and Temperature Compensation for Composite Tank // Aerospace Science and Technology. 2022. V. 127. P. 107724. DOI: 110.1016/j.ast.2022.107724 17. Rocha H., Semprimoschnig C., Nunes J. P. Small-Diameter Optical Fibre Sensor Embedment for Ambient Temperature Cure Monitoring and Residual Strain Evaluation of CFRP Composite Laminates Produced by Vacuum-Assisted Resin Infusion // CEAS Space Journal. 2021. V. 13. P. 353 – 367. DOI: 0.1007/s12567-021-00357-5 18. Sivanesan P., Sirkis J. S., Murata Y., Buckley S. G. Optimal Wavelength Pair Selection and Accuracy Analysis of Dual Fiber Grating Sensors for Simultaneously Measuring Strain and Temperature // Opt. Eng. 2002. V. 41, No. 10. P. 2456 – 2463. DOI: 10.1117/1.1505638 19. Федотов М. Ю. Особенности создания системы одновременного встроенного контроля деформации и температуры композитных конструкций волоконно-оптическими датчиками // Космические аппараты и технологии. 2023. Т. 7, № 1(43). С. 24 – 34. EDN RLKZPE. DOI: 10.26732/j.st.2023.1.03 20. Аксенова Е. Н., Гасников Н. К., Калашников Н. П. Методы оценки погрешностей результатов прямых и косвенных измерений в лабораториях физического практикума: учеб.-метод. пособие. М.: МИФИ, 2009. 24 с. 21. Федотов М. Ю. Теоретические аспекты калибровки и оценки погрешностей волоконно-оптической системы диагностики полимерных композитов // Конструкции из композиционных материалов. 2023. № 2(170). С. 43 – 51. DOI: 10.52190/2073-2562_2023_2_43 22. Федотов М. Ю. Теоретические исследования термокомпенсации результатов диагностики полимерных композитов методом двух оптических волокон // Дефектоскопия. 2023. № 10. С. 53 – 65. DOI: 10.31857/S0130308223100056.
1. Kesarwani S. (2017). Polymer Composites in Aviation Sector. International Journal of Engineering Research & Technology, 6(6), 518 – 525. DOI: 10.17577/IJERTV6IS060291 2. Sivakov D. V., Gulyaev I. N., Sorokin K. V. et al (2011). Features of creating polymer composite materials with an integrated active electromechanical actuator system based on piezoelectrics. Aviatsionnye materialy i tekhnologii, 18(1), 31 – 34. [in Russian language] EDN RNECUX. 3. Goncharov V. A., Fedotov M. Yu., Shienok A. M. et al. (2013). Modeling of infusion technologies for the production of layered polymer composite materials. Vse materialy. Entsiklopedicheskiy spravochnik, (1), 43 – 49. [in Russian language] EDN QABDDV. 4. Orlov F. A. (2019). The use of composite materials in the design of the MS-21 aircraft. Technological innovations and scientific discoveries: a collection of articles based on the materials of the International Scientific and Practical Conference, 43 – 48. Ufa: NITs «Vestnik nauki». [in Russian angauge] EDN RXRBZA. 5. Parveez B., Kittur M. I., Badruddin I. A. et al. (2022). Scientific Advancements in Composite Materials for Aircraft Applications: A Review. Polymers, 14(22). DOI: 10.3390/polym14225007 6. Nayak N. V. (2014). Composite Materials in Aerospace Applications. International Journal of Scientific and Research Publications, 4(9). 7. Mashayekhi F., Bardon J., Berthe V. et al. (2021). Fused Filament Fabrication of Polymers and Continuous Fiber-Reinforced Polymer Composites: Advances in Structure Optimization and Health Monitoring. Polymers, 13(5). DOI: 10.3390/polym13050789 8. Rajan G., Ramakrishnan M., Semenova Yu. et al. (2014). Experimental Study and Analysis of a Polymer Fiber Bragg Grating Embedded in a Composite Material. Journal of Lightwave Technology, 32(9), 1726 – 1733. DOI: 10.1109/JLT.2014.2311441 9. Matveenko V. P. (2021). New opportunities in the design of SPS: probionic structures, smart materials, intelligent monitoring. Fundamental problems of creating a new generation of ATP: a collection of abstracts from the visiting section of the International School-Seminar, 14 – 18. Moscow: Tsentral'niy aerogidrodinamicheskiy institut im. professora N. E. Zhukovskogo. [in Russian language] 10. Matveenko V. P., Kosheleva N. A., Serovaev G. S. (2021). Experimental and theoretical results related to strain measurements with in-material fiber-optic Bragg grating sensors. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, (6), 3 – 15. [in Russian language] DOI: 10.31857/S0572329921060088. EDN BRLEGB 11. Fedorov A. Yu., Kosheleva N. A., Matveenko V. P., Serovaev G. S. (2020). Strain Measurement and Stress Analysis in the Vicinity of a Fiber Bragg Grating Sensor Embedded in a Composite Material. Composite Structures, 239. DOI: 10.1016/j.compstruct.2019.111844. EDN OFCCAW. 12. Dalinkevich A. A., Miheev P. V., Gusev S. A. et al. (2016). Study of longterm water absorption of structural epoxy fiberglass plastics using fiber-optic strain sensors. North of Russia: strategies and development prospects: materials of the II All-Russian Scientific and Practical Conference, 2, 67 – 71. Surgut: Surgutskiy gosudarstvenniy universitet. [in Russian language] EDN ZAJUMN. 13. Dalinkevich A. A., Miheev P. V., Gusev S. A. et al. (2016). Application of fiber-optic strain sensors to study microstructural changes in structural epoxy fiberglass reinforced plastics under the influence of natural aging factors. North of Russia: strategies and development prospects: materials of the II All-Russian Scientific and Practical Conference, 2, 71 – 76. Surgut: Surgutskiy gosudarstvenniy universitet. [in Russian language] EDN ZAJUMX. 14. Larin A. A., Fedotov M. Yu., Buharov S. V. et al. (2017). New applications for fiber optic sensor systems. Prikladnaya fotonika, 4(4), 310 – 323. [in Russian language] EDN YXRLAD. 15. Tanaka N., Okabe Y., Takeda N. (2003). Temperature-Compensated Strain Measurement Using FBG Sensors Embedded in Composite Laminates. Smart Materials and Structures, 12(6), 940 – 946. DOI: 10.1088/0964-1726/12/6/011 16. Liang Z., Liu D., Wang X. et al. (2022). FBG-Based Strain Monitoring and Temperature Compensation for Composite Tank. Aerospace Science and Technology, 127. DOI: 110.1016/j.ast.2022.107724 17. Rocha H., Semprimoschnig C., Nunes J. P. (2021). Small-Diameter Optical Fibre Sensor Embedment for Ambient Temperature Cure Monitoring and Residual Strain Evaluation of CFRP Composite Laminates Produced by Vacuum-Assisted Resin Infusion. CEAS Space Journal, 13, 353 – 367. DOI: 0.1007/s12567-021-00357-5 18. Sivanesan P., Sirkis J. S., Murata Y., Buckley S. G. (2002). Optimal Wavelength Pair Selection and Accuracy Analysis of Dual Fiber Grating Sensors for Simultaneously Measuring Strain and Temperature. Optical Engineering, 41(10), 2456 – 2463. DOI: 10.1117/1.1505638 19. Fedotov M. Yu. (2023). Features of creating a system for simultaneous built-in monitoring of deformation and temperature of composite structures using fiber-optic sensors. Kosmicheskie apparaty i tekhnologii, Vol. 7, 43(1), 24 – 34. [in Russian language] DOI: 10.26732/j.st.2023.1.03. EDN RLKZPE. 20. Aksenova E. N., Gasnikov N. K., Kalashnikov N. P. (2009). Methods for assessing errors in the results of direct and indirect measurements in physics workshop laboratories: educational and methodological manual. Moscow: MIFI. [in Russian language] 21. Fedotov M. Yu. (2023). Theoretical aspects of calibration and error assessment of a fiber-optic system for diagnosing polymer composites. Konstruktsii iz kompozi-tsionnyh materialov, 170(2), 43 – 51. [in Russian language] DOI: 10.52190/2073-2562_2023_2_43 22. Fedotov M. Yu. (2023). Theoretical investigations of temperature compensation of the results of the diagnosis of polymer composites by the method of two optical fiber Defectoscopy, (10), 53 – 65. [in Russian language]. DOI: 10.31857/S0130308223100056.
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2024.01.pp.004-013
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2024.01.pp.004-013
and fill out the form
.
|