Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 11 | 2024
2024, 02 February

DOI: 10.14489/td.2024.02.pp.030-038

Mokritskii B. Ya., Skripilev A. A.
DIAGNOSTICS OF INSTRUMENTAL MATERIALS BASED ON THE RESULTS OF MODELING OF COATINGS OF INSTRUMENTAL MATERIAL
(pp. 30-38)

Abstract. Computer modeling makes it possible to predict the adhesion properties of various materials and monolayers in the material at the atomic level. As a result of this approach, it is possible to diagnose the operational properties of the tool material according to the calculated values of the adhesion energy of the layers in the tool coating. The issues of studying the adhesive properties of monolayers successively deposited on a hard alloy VK8 are considered. The adhesive properties of Ti, TiN and (Ti, Cr, Al)N layers with each other and with WC92-Co8 hard alloy are investigated. The dependence of the adhesion energy of titanium to WC and Co surfaces depending on the thickness (from one to three atomic layers) of the deposited titanium layer has been studied. For four variants of the compound structure (Ti, Cr, Al)N the adhesion energy of this compound to the TiN surface is calculated. An approach to predicting rational coatings has been developed. It consists in the calculation (control) of the adhesion energy and the use of the adhesion energy value to diagnose a rational coating option for an instrumental hard alloy VK8.

Keywords: atomic-force approach to the prediction of instrumental material, the adhesion energy of layers.

B. Ya. Mokritskii, A. A. Skripilev (Komsomol-on-Amur state University, Komsomol-on-Amur, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Schwartz S. D. (Ed.), Wang Y. A., Carter E. A. (2000). Orbital-Free Kinetic-Energy Density Functional Theory. Theoretical Methods in Condensed Phase Chemistry. Chapter 5, 117 – 184. Dordrecht: Kluwer. (Progress in Theoretical Chemistry and Physics).
2. Huajie Chen, Aihui Zhou. (2008). Orbital-free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods Applications, (1), 1 – 28.
3. Baojing Zhou, Ligneres V. L., Carter E. A. (2005). Improving the Orbital-Free Density Functional Theory Description of Covalent Materials. Journal Chemical Physics, 122(4), 044103 – 044113.
4. Hohenbeg H., Kohn W. (1964). Inhomogeneous Electron Gas. Physical Review, 136, B864 – B871.
5. Zavodinsky V. G., Gorkusha O. A. (2014). Quantum mechanical simulation without wave functions. Fizika Tverdogo Tela, 56(11), 2253 – 2258. [in Russian language]
6. Zavodinsky V. G., Gorkusha O. A. (2014). Towards modeling large nanosystems at the atomic level. Computational Nanotechnology, (1), 11 – 16. [in Russian language]
7. Zavodinsky V. G., Gorkusha О. А. (2015). A new Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, (5), 39 – 47.
8. Christensen M., Dudiy S., Wahnstrőm G. (2002). First-principles simulations of metal-ceramic interface adhesion: Co/WC versus Co/TiC. Physical Review B, 65(4), 045408 – 045415.
9. Zavodinsky V. G. (2010). Small Tungsten Carbide Nanoparticles: Simulation of Structure, Energetic, and Tensile Strength. International Journal of Refractory Metals and Hard Materials, 28, 446 – 450.
10. Christensen M., Wahnstrőm G. (2003). Co-Phase Penetration of C(101¯0)/WC(101¯0) Grain Boundaries from First Principles. Physical Review B, 67, 115415 – 115425.
11. Christensen M., Wahnstrőm G. (2004). Effects of Cobalt Intergranular Segregation on Interface Energetics in WC–Co. Acta Materialia, 52, 2199 – 2207.
12. Östberg G., Buss K., Christensen M. et al. (2006). Effect of TaC on Plastic Deformation of WC–Co and Ti (C, N)–WC–Co. International Journal of Refractory Metals and Hard Materials, 24(1–2), 145 – 154.
13. Östberg G., Farooq M. U., Christensen M. et al. (2006). Effect of Σ 2 Grain Boundaries on Plastic Deformation of WC–Co Cemented Carbides. Materials Science and Engineering A, 416, 119 – 125.
14. Mokritskiy B. Ya., Zavodinskiy V. G., Garkusha O. A. (2023). Study of adhesion layers of Ti and TiN (Ti, Cr, Al)N, sequentially deposited on the surface of the WC92–Co8 hard alloy. Computatiional Nanjtechnology, 10(2), 53 – 59. [in Russian language] DOI: 10.33693/2313-223X-2023-10-2-53-59
15. Hohenberg H., Kohn W. (1964). Inhomogeneous Electron Gas. Physical Review B, 136, 864 – 871.
16. Kohn W., Sham J. L. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review A, 140, 1133 – 1138.
17. Perdew J. P., Wang Y. (1986). Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation. Physical Review B, 33(12), 8800 – 8802.
18. Ehrenreich H., Seitz F., Turnbull D. (Eds.), Cohen M. L., Heine V. (1970). Effect of Dislocations on Electrical and Optical Properties in GaAs and GaN. Solid State Physics, 24, 38 – 249. New York: Academic Press.
19. Fuchs M., Scheffler M. (1999). Ab Initio Pseoudopotentials for Electronic Structure Calculations of Poly-Atomic Systems Using Density-Functional Theory. Computer Physics Communications, 119, 67 – 98.
20. Zavodinsky V. G. (2011). Small Tungsten Carbide Nanoparticles: Simulation of Structure, Energetics, and Tensile Strength. International Journal of Refractory Metals and Hard Materials, 28, 446 – 450.
21. Zavodinsky V. G. (2011). Ab Initio Study of the fcc-WC(100) Surface and its Interaction with Cobalt Monolayers. Applied Surface Science, 257, 3581 – 3585.
22. Zavodinsky V. G. (2011). Cobalt Layers Crystallized on the WC(100) Surface: Spin-Polarized ab Initio Study. International Journal of Refractory Metals and Hard Materials, 29, 184 – 187.
23. Zavodinsky V. G. (2010). Development of an Orbital-Free Approach for Simulation of Multi-Atomic Nanosystems with Covalent Bonds. International Journal of Nanomechanics Science and Technology, 1(4), 1 – 8.
24. Zavodinsky V. G. (2012). Ab Intio Study of Inhibitors Influence on Growth of WC Crystallites in WC/Co Hard Alloys. International Journal of Refractory Metals and Hard Materials, 31, 263 – 265.
25. Fang Z., Maheshwari P., Wang X. et al. (2005). An Experimental Study of the Sintering of Nanocrystalline WC–Co Powders. International Journal of Refractory Metals and Hard Materials, 23, 249 – 57.
26. Grigor'ev S. N., Tabakov V. P., Volosova M. A. (2011). Technological methods for increasing the wear resistance of cutting tool contact pads. Stariy Oskol: TNT. [in Russian language]
27. Grigor'ev S. N. (2011). Methods for increasing the durability of cutting tools: textbook for universities. Moscow: Mashinostroenie. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.02.pp.030-038

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования