Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2024, 04 апрель (April)

DOI: 10.14489/td.2024.04.pp.054-063

Бусько В. Н., Ничипурук А. П., Сташков А. Н.
МЕТОДИКА МЕХАНИЧЕСКИХ ИСПЫТАНИЙ И ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ КОНТРОЛЯ УСТАЛОСТНОЙ ПРОЧНОСТИ МАГНИТОШУМОВЫМ МЕТОДОМ СТАЛЬНЫХ ОБРАЗЦОВ, ИЗГОТОВЛЕННЫХ ПО АДДИТИВНОЙ ТЕХНОЛОГИИ
(pp. 54-63)

Аннотация. Стальные изделия, изготовленные с применением аддитивных технологий, являются альтернативой традиционным способам их получения. Специфический способ их формообразования актуализирует вопрос о жестком контроле их качества, включая усталостную прочность. Для исследования возможности контроля на изготовленных селективным лазерным сплавлением и методом литья (для сравнения) образцах низколегированной стали 09Г2С предложено использовать магнитошумовой метод. Для механических испытаний образцов при изгибе создан простой оригинальный портативный стенд, разработаны методика исследований усталостной прочности и программа испытаний образцов. Испытания показали эффективность использования методики и стенда при изучении усталостной прочности. Представлены результаты оценки локальной неоднородности свойств образцов до циклирования и влияния на уровень магнитного шума числа циклов на начальном периоде нагружения при малой амплитуде цикла.

Ключевые слова:  аддитивные технологии, стальные 3D-образцы, усталость, усталостная прочность, селективное лазерное сплавление, метод эффекта Баркгаузена, магнитошумовой метод и магнитный шум, микроструктура.

 

Busko V. N., Nichipuruk A. P., Stashkov A. N.
THE METHOD OF MECHANICAL TESTING AND INVESTIGATION OF THE POSSIBILITY OF FATIGUE STRENGTH CONTROL BY THE MAGNETO-NOISE METHOD OF STEEL SAMPLES MANUFACTURED BY ADDITIVE TECHNOLOGY
(pp. 54-63)

Abstract. Steel products manufactured using additive technologies are an alternative to traditional methods of their production. The specific method of their forming actualizes the issue of strict control of their quality, including fatigue strength. To investigate the possibility of control on the samples of low-alloyed steel 09G2S produced by selective laser alloying and, for comparison, by casting method, it is proposed to use the magnetic noise method. For mechanical tests of specimens in bending a simple original portable stand was created, a methodology of fatigue strength research and a program of specimen testing were developed. The tests have shown the efficiency of using the methodology and the bench in the study of fatigue strength. The results of evaluation of local heterogeneity of specimen properties before cycling and the effect on the magnetic noise level of the number of cycles at the initial period of loading at low cycle amplitude are presented.

Keywords: additive technologies, 3D steel samples, fatigue, fatigue strength, selective laser fusion, Barkhausen effect method, magnetic noise method and magnetic noise, microstructure.

Рус

В. Н. Бусько (Государственное научное учреждение «Институт прикладной физики НАН Беларуси», Минск, Беларусь) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. -net
А. П. Ничипурук, А. Н. Сташков (Институт физики металлов им. М. Н. Михеева УрО РАН, Екатеринбург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Eng

V. N. Busko (State Scientific Institution "Institute of Applied Physics of the National Academy of Sciences of Belarus", Minsk, Belarus) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. -net
A. P. Nichipuruk, A. N. Stashkov (M. N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Рус

1. Гибсон Я., Розен Д., Стакер Б. Технология аддитивного производства: пер. с англ. М.: Техносфера, 2016. 656 с.
2. Дресвянников В. А., Страхов Е. П. Аддитивные технологии как технологическая инновация: понятие, содержание, анализ развития // Экономика и менеджмент инновационных технологий, 2018, № 1 [Электронный ресурс].
3. Алешин Н. П., Григорьев Н. В., Щипаков Н. А и др. Применение методов неразрушающего контроля для оценки качества готовых деталей аддитивного производства // Дефектоскопия, 2016. № 10. С. 63 ‒ 75.
4. Алешин Н. П., Григорьев Н. В., Щипаков Н. А. и др. Применение методов неразрушающего контроля для оценки качества деталей непосредственно в процессе аддитивного производства // Дефектоскопия. 2016. № 9. С. 64 ‒ 71.
5. Горкунов Э. С., Драгошанский Ю. Н., Миховски М. Эффект Баркгаузена и его использование в структуроскопии ферромагнитных материалов (обзор I/ обзор II) // Дефектоскопия. 1999. № 6. С. 3 – 23; № 7. С. 3 – 32.
6. Fagan P., Zhang S., Sebald G., et al. Barkhausen Noise Hysteresis Cycle: Theoretical and Experimental Understanding // Journal of Magnetism and Magnetic Materials. 2023. V. 578. P. 170810. URL: https://doi.org/10.1016/j.jmmm.2023.170810
7. Manh Tu Le, Benitez J. A. P., Hernandez J. H. E., Lopez J. M. H. Barkhausen Noise for Nondestructive Testing and Materials Characterization in Low-Carbon Steels. Cambridge: Elsevier Ltd., 2020. 268 p.
8. Терентьев В. Ф. Усталость металлических материалов. М.: Наука, 2003. 254 с.
9. Горбовец М. А., Евгенов А. Г., Беляев М. С. и др. Усталостные характеристики литейных жаропрочных никелевых сплавов, полученных методом селективного лазерного сплавления // Матер. III Междунар. науч.-техн. конф. «Аддитивные технологии: настоящее и будущее», Москва, 23 марта 2017 г. М.: ВИАМ, 2017. С. 6.
10. Чемодуров А. Н. Применение аддитивных технологий в производстве изделий машиностроения // Известия ТулГУ. Технические науки. 2016. Вып. 8. Ч. 2. С. 210 ‒ 217.
11. Сухов Д. И., Мазалов П. Б., Неруш С. В. и др. Влияние параметров лазерного селективного сплавления на образование пористости в синтезированном материале коррозионностойкой стали // Тр. ВИАМ. 2017. № 8. С. 34 – 44.
12. Бусько В. Н., Венгринович В. Л., Винтов Д. А. и др. Особенности усталостной прочности образцов, полученных селективным лазерным спеканием из стали 09Г2С // Неразрушающий контроль и диагностика. 2020. № 4. С. 16 – 25.
13. Ничипурук А. П., Сташков А. Н., Щапова Е. А. и др. Структура и магнитные свойства стали 09Г2С, полученной методом селективного лазерного сплавления // Физика твердого тела. 2021. Т. 63, вып. 11. С. 1719 – 1724.
14. Сташков А. Н., Ничипурук А. П., Щапова Е. А. и др. Магнитные свойства циклически деформированной растяжением стали 09Г2С, изготовленной с помощью селективного лазерного сплавления // Дефектоскопия. 2023. № 1. С. 44 ‒ 52.
15. Бусько В. Н., Осипов А. А. Исследование и оценка механической анизотропии сталей и сплавов магнитошумовым методом // В мире НК. 2020. № 3. С. 50 – 56.
16. Бусько В. Н. Лабораторная установка для исследования усталостной повреждаемости плоских ферромагнитных образцов // Приборы и техника эксперимента. 2011. № 1. С. 165 – 167.
17. Шешуков А. Н., Бусько В. Н. Исследование и оценка напряженного состояния стальных конструкций с использованием метода эффекта Баркгаузена // Контроль. Диагностика. 2005. № 9. С. 54 ‒ 58.
18. Sames W. J., Raghavan S. Heat Treatment of Electron Beammelted (EBM) Ti-6A1-4V: Microstructure to Mechanical Property Correlations // Rapid Prototyping Journal. 2018. V. 24, No. 4. P. 774 ‒ 783.
19. Oliveira A. R., Oliveira V. F., Teixeira J. C., Conte E. G. Investigation of the Build Orientation Effect on Magnetic Properties and Barkhausen Noise of Additively Manufactured Maraging Steel 300 // Additive Manufacturing. 2021, V. 38. P. 101827. URL: https://doi.org/10.1016/j.addma.2020.101827
20. Ашвани Шарма, Абхиманью Чаудхари, Акаш Субхаш Авале и др. Влияние условий шлифования на магнитный отклик инструментальной стали AISI D2 // Дефектоскопия. 2022. № 3. С. 26 ‒ 36. DOI: 10.31857/SO130308221030039

Eng

1. Gibson Ya., Rozen D., Staker B. (2016). Additive manufacturing technology. Moscow: Tekhnosfera. [in Russian language]
2. Dresvyannikov V. A., Strahov E. P. (2018). Additive technologies as technological innovation: concept, content, development analysis. Ekonomika i menedzhment innovatsionnyh tekhnologiy, (1). [in Russian language]
3. Aleshin N. P., Grigor'ev N. V., Shchipakov N. A et al. (2016). Application of non-destructive testing methods to assess the quality of finished additive manufacturing parts. Defektoskopiya, (10), 63 ‒ 75. [in Russian language]
4. Aleshin N. P., Grigor'ev N. V., Shchipakov N. A. et al. (2016). Application of non-destructive testing methods to assess the quality of parts directly during the additive manufacturing process. Defektoskopiya, (9), 64 ‒ 71. [in Russian language]
5. Gorkunov E. S., Dragoshanskiy Yu. N., Mihovski M. (1999). The Barkhausen effect and its use in the structuroscopy of ferromagnetic materials (review I/ review II). Defektoskopiya, (9), 3 – 23; (7), 3 – 32. [in Russian language]
6. Fagan P., Zhang S., Sebald G. et al. (2023). Barkhausen Noise Hysteresis Cycle: Theoretical and Experimental Understanding. Journal of Magnetism and Magnetic Materials, 578. Retrieved from https://doi.org/10.1016/j.jmmm.2023.170810
7. Manh Tu Le, Benitez J. A. P., Hernandez J. H. E., Lopez J. M. H. (2020). Barkhausen Noise for Nondestructive Testing and Materials Characterization in Low-Carbon Steels. Cambridge: Elsevier Ltd.
8. Terent'ev V. F. (2003). Fatigue of metal materials. Moscow: Nauka. [in Russian language]
9. Gorbovets M. A., Evgenov A. G., Belyaev M. S. et al. (2017). Fatigue characteristics of cast heat-resistant nickel alloys obtained by selective laser melting. Materials of the III International Scientific and Technical Conference “Additive Technologies: Present and Future”. Moscow: VIAM. [in Russian language]
10. Chemodurov A. N. (2016). Application of additive technologies in the production of mechanical engineering products. Izvestiya TulGU. Tekhnicheskie nauki, (8), part 2, 210 ‒ 217. [in Russian language]
11. Suhov D. I., Mazalov P. B., Nerush S. V. et al. (2017). Influence of parameters of laser selective alloying on the formation of porosity in the synthesized material of corrosion-resistant steel. Trudy VIAM, (8), 34 – 44. [in Russian language]
12. Bus'ko V. N., Vengrinovich V. L., Vintov D. A. et al. (2020). Features of fatigue strength of samples obtained by selective laser sintering from steel 09G2S. Nerazrushayushchiy kontrol' i diagnostika, (4), 16 – 25. [in Russian langauge]
13. Nichipuruk A. P., Stashkov A. N., Shchapova E. A. et al. (2021). Structure and magnetic properties of 09G2S steel produced by selective laser alloying. Fizika tverdogo tela, 63(11), 1719 – 1724. [in Russian language]
14. Stashkov A. N., Nichipuruk A. P., Shchapova E. A. et al. (2023). Magnetic properties of 09G2S steel cyclically deformed by tension, manufactured using selective laser alloying. Defektoskopiya, (1), 44 ‒ 52. [in Russian language]
15. Bus'ko V. N., Osipov A. A. (2020). Research and assessment of mechanical anisotropy of steels and alloys using the magnetic noise method. V mire NK, (3), 50 – 56. [in Russian language]
16. Bus'ko V. N. (2011). Laboratory installation for studying the fatigue damage of flat ferromagnetic samples. Pribory i tekhnika eksperimenta, (1), 165 – 167. [in Russian language]
17. Sheshukov A. N., Bus'ko V. N. (2005). Study and assessment of the stress state of steel structures using the Barkhausen effect method. Kontrol'. Diagnostika, (9), 54 ‒ 58. [in Russian language]
18. Sames W. J., Raghavan S. (2018). Heat Treatment of Electron Beammelted (EBM) Ti-6A1-4V: Microstructure to Mechanical Property Correlations. Rapid Prototyping Journal, 24(4), 774 ‒ 783.
19. Oliveira A. R., Oliveira V. F., Teixeira J. C., Conte E. G. (2021). Investigation of the Build Orientation Effect on Magnetic Properties and Barkhausen Noise of Additively Manufactured Maraging Steel 300. Additive Manufacturing, 38. Retrieved from https://doi.org/10.1016/j.addma.2020.101827
20. Ashvani Sharma, Abhiman'yu Chaudhari, Akash Subhash Avale et al. (2022). Influence of grinding conditions on the magnetic response of AISI D2 tool steel. Defektoskopiya, (3), 26 ‒ 36. [in Russian language] DOI: 10.31857/SO130308221030039

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2024.04.pp.054-063

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.04.pp.054-063

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования