Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2024, 06 июнь (June)

DOI: 10.14489/td.2024.06.pp.018-027

Серьезнов А. Н., Степанова Л. Н., Кабанов С. И., Чернова В. В., Кузнецов А. Б.
АКУСТИКО-ЭМИССИОННЫЙ КОНТРОЛЬ ДЕФЕКТОВ ЗОНЫ КРЕПЛЕНИЯ КРЫЛА САМОЛЕТА В УСЛОВИЯХ ПОЛЕТА
(c. 18-27)

Аннотация. Приведены результаты исследований, полученных при мониторинге конструкции самолета Ту-134А в полете. На борту самолета были установлены два четырехканальных блока микропроцессорной акустико-эмиссионной (АЭ) системы СЦАД-16.12 и две антенны, каждая из которых подключалась к одному из блоков системы. Одна из антенн состояла из четырех пьезоэлектрических преобразователей акустической эмиссии (ПАЭ), а в другой антенне использовались два датчика ПАЭ и два волоконно-оптических датчика (ВОД). Сигналы с датчиков ПАЭ и ВОД поступали на вход измерительных каналов каждого блока системы, обрабатывались и в цифровом виде передавались в компьютер. Затем строились линейная локация, осуществляемая двумя датчиками ПАЭ, установленными на шпангоуте, и суммарный счет сигналов АЭ от времени, зарегистрированный в процессе взлета самолета, во время его полета и посадки.

Ключевые слова:  акустическая эмиссия, пьезоэлектрические и волоконно-оптические датчики, самолет, полет, информативные параметры сигналов акустической эмиссии.

 

Sereznov A. N., Stepanova L. N., Kabanov S. I., Chernova V. V., Kuznetsov A. B.
ACOUSTIC EMISSION CONTROL OF DEFECTS IN THE AIRCRAFT WING ATTACHMENT ZONE IN FLIGHT
(pp. 18-27)

Abstract. The results of studies obtained while monitoring the structure of the Tu-134A aircraft in flight are presented. On board the aircraft were installed two four-channel blocks of the microprocessor acoustic-emission (AE) system STsAD-16.12 and two antennas, each of which was connected to one of the system blocks. One of the antennas consisted of four piezoelectric acoustic emission transducers (PAEs), and the other antenna used two PAE sensors and two fiber optic sensors (FOS). Signals from the PAE and FOS sensors were received at the input of the measuring channels of each block of the system, processed and digitally entered into the computer. Then a linear location was built, carried out by two AE sensors installed on the frame, and a total count of AE signals over time, recorded during the takeoff of the aircraft, during its flight and landing.

Keywords: acoustic emission, piezoelectric and fiber-optic sensors, aircraft, flight, informative parameters of acoustic emission signals.

Рус

А. Н. Серьезнов, Л. Н. Степанова, С. И. Кабанов (ФАУ «Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина», Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. В. Чернова (Сибирский государственный университет путей сообщения» (СГУПС), Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. Б. Кузнецов (ФАУ «Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина», Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

A. N. Sereznov, L. N. Stepanova, S. I. Kabanov (FAU “Siberian Aviation Research Institute named after S. A. Chaplygina”, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. V. Chernova (Siberian State Transport University, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. B. Kuznetsov (FAU “Siberian Aviation Research Institute named after S. A. Chaplygina”, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Акустико-эмиссионный контроль авиационных конструкций / А. Н. Серьезнов, Л. Н. Степанова, С. И. Кабанов и др.; под ред. Л. Н. Степановой, А. Н. Серьезнова. М.: Машиностроение / Машиностроение – Полет, 2008. 440 с.
2. Серьезнов А. Н., Степанова Л. Н., Кабанов С. И. и др. Возможность использования метода акустической эмиссии для диагностики конструкции вертолета Ми-8 в условиях полета // Полет. 2018. № 7. С. 7 – 13.
3. Серьезнов А. Н., Мальцев А. В., Степанова Л. Н. и др. Контроль усталостных повреждений при ресурсных испытаниях полуоси стабилизатора маневренного самолета с использованием метода акустической эмиссии и тензометрии // Дефектоскопия. 2008. № 9. С. 3 – 10.
4. Finlayson R. D., Friesel M., Cole P. Health Monitoring of Aerospace Structures With Acoustic Emission and Acousto-Ultrasonics // Insight. 2001. V. 43, No. 3. P. 155 – 158.
5. PAC Awarded Contract With US Army to Develop New AE System for Health Monitoring of Helicopter Mechanical Systems // Insight. 1996. V. 38, No. 11. P. 768.
6. Sause M. G. R. On Use of Signal Features for Acoustic Emission Souse Identification in Fiber-Reinforced Composites // Journal of Acoustic Emission. 2018. V. 35. P. 125 – 136.
7. Lehmann M., Bueter A., Schwarzaupt O. Structural Health Monitoring of Composite Aerospace Structures With Acoustic Emission // Journal of Acoustic Emission. 2018. V. 35. P. 172 – 193.
8. Williams C. R. S., Hutchinson M. N., Hart J., Merril M. H. Multichannel Fiber Laser Acoustic Emission Sensor System for Crack Detection and Location in Accelerated Fatique Testing of Aluminum Panels // APL Photonics. 2020. V. 5, No. 3. P. 0803.
9. Ljets D. Acoustic Emission Location in Composite Aircraft Structures Using Modal Analysis. Treforest: University of Glamorgan, 2011. 163 p.
10. Sikdar S., Mirgl P., Bantrjee S., Ostachowicz W. Damage-Induced Acoustic Emission Source Monitoring in a Honeycomb Sandwich Composite Structure // Composites. 2018. Pt B. Engineering. V. 158, No. 3. P. 179 – 188.
11. Pappu R. P. Acoustic Emission Detection Using Optical Fiber Sensors for the Aerospace Applications. Birmingham: Astor Univ., 2011. 177 p.
12. Aljets D. Acoustic Emission Source Location in Composite Aircraft Structures Using Modal Analysis.Treforest: University of Glamorgan, 2011. 163 p.
13. Kahandawa G. C., Epaachchi J., Wang H. Use of FBG Sensors for SHM in Aerospace Structures // Photonic Sensors. 2012. V. 2, No. 3. P. 203 – 214.
14. Акустико-эмиссионный контроль дефектов сварки / А. Н. Серьезнов, Л. Н. Степанова, С. И. Кабанов и др. Новосибирск: Наука, 2018. 272 с.
15. Свирский Ю. А., Трунин Ю. П., Панков А. В. и др. Бортовые системы мониторинга (БСМ) и перспективы применения в них волоконно-оптических датчиков // Композиты и наноструктуры. 2017. № 1. С. 35 – 44.
16. Ремшев Е. Ю., Соболев И. А., Олехвер А. И., Лукичев В. Ю. Разработка бортового комплекса неразрушающего контроля конструкции летательного аппарата методом акустической эмиссии // NOISE Theory and Practice. 2021. № 2. С. 65 – 82.
17. Воробьев А. А., Лагойко О. С. Информационно-диагностические системы встроенного контроля состояния воздушных судов // Программные системы и вычислительные методы. 2014. № 4(9). С. 437 – 445.
18. Масхидов В. В., Кашарина Л. А., Смирнов О. И., Яковлев Н. О. Построение оптоэлектронной системы встроенного контроля авиационных конструкций, изготовленных с применением полимерных композиционных материалов // Конструкции из композиционных материалов. 2019. № 1. С. 65 – 73.
19. Бочкова С. Д., Волковский С. Д., Ефимов М. Е. и др. Метод локализации воздействия в композитном материале с помощью волоконно-оптических датчиков акустической эмиссии // Приборы и техника эксперимента. 2020. № 4. С. 73 – 77.
20. Степанова Л. Н., Чернова В. В. Анализ структурных коэффициентов сигналов акустической эмиссии при статическом нагружении образцов из углепластика с ударными повреждениями // Контроль. Диагностика. 2017. № 6. С. 34 – 41.
21. Степанова Л. Н., Чернова В. В., Кабанов С. И. Анализ модового состава сигналов акустической эмиссии при одновременном тепловом и статическом нагружении образцов из углепластика Т800 // Контроль. Диагностика. 2018. № 11. С. 4 – 13.

Eng

1. Stepanova L. N., Ser'eznov A. N. (Eds.), Kabanov S. I. et al. (2008). Acoustic emission control of aircraft structures. Moscow: Mashinostroenie/ Mashinostroenie – Polet. [in Russian language]
2. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. et al. (2018). Possibility of using the acoustic emission method to diagnose the design of the Mi-8 helicopter under flight conditions. Polet, (7), 7 – 13. [in Russian language]
3. Ser'eznov A. N., Mal'tsev A. V., Stepanova L. N. et al. (2008). Monitoring fatigue damage during life tests of the stabilizer axle shaft of a maneuverable aircraft using the acoustic emission and strain gauge method. Defektoskopiya, (9), 3 – 10. [in Russian language]
4. Finlayson R. D., Friesel M., Cole P. (2001). Health Monitoring of Aerospace Structures With Acoustic Emission and Acousto-Ultrasonics. Insight, 43(3), 155 – 158.
5. PAC Awarded Contract With US Army to Develop New AE System for Health Monitoring of Helicopter Mechanical Systems. (1996). Insight, 38(11).
6. Sause M. G. R. (2018). On Use of Signal Features for Acoustic Emission Souse Identification in Fiber-Reinforced Composites. Journal of Acoustic Emission, 35, 125 – 136.
7. Lehmann M., Bueter A., Schwarzaupt O. (2018). Structural Health Monitoring of Composite Aerospace Structures With Acoustic Emission. Journal of Acoustic Emission, 35, 172 – 193.
8. Williams C. R. S., Hutchinson M. N., Hart J., Merril M. H. (2020). Multichannel Fiber Laser Acoustic Emission Sensor System for Crack Detection and Location in Accelerated Fatique Testing of Aluminum Panels. APL Photonics, 5(3).
9. Ljets D. (2011). Acoustic Emission Location in Composite Aircraft Structures Using Modal Analysis. Treforest: University of Glamorgan.
10. Sikdar S., Mirgl P., Bantrjee S., Ostachowicz W. (2018). Damage-Induced Acoustic Emission Source Monitoring in a Honeycomb Sandwich Composite Structure. Composites Part B: Engineering, 158(3), 179 – 188.
11. Pappu R. P. (2011). Acoustic Emission Detection Using Optical Fiber Sensors for the Aerospace Applications. Birmingham: Astor University.
12. Aljets D. (2011). Acoustic Emission Source Location in Composite Aircraft Structures Using Modal Analysis. Treforest: University of Glamorgan.
13. Kahandawa G. C., Epaachchi J., Wang H. (2012). Use of FBG Sensors for SHM in Aerospace Structures. Photonic Sensors, 2(3), 203 – 214.
14. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. et al. (2018). Acoustic emission testing of welding defects. Novosibirsk: Nauka. [in Russian language]
15. Svirskiy Yu. A., Trunin Yu. P., Pankov A. V. et al. (2017). On-board monitoring systems (BMS) and prospects for using fiber-optic sensors in them. Kompozity i nanostruktury, (1), 35 – 44. [in Russian language]
16. Remshev E. Yu., Sobolev I. A., Olekhver A. I., Lukichev V. Yu. (2021). Development of an onboard complex for non-destructive testing of aircraft structures using the acoustic emission method. NOISE Theory and Practice, (2), 65 – 82. [in Russian language]
17. Vorob'ev A. A., Lagoyko O. S. (2014). Information and diagnostic systems for builtin aircraft condition monitoring. Programmnye sistemy i vychislitel'nye metody, 9(4), 437 – 445. [in Russian language]
18. Maskhidov V. V., Kasharina L. A., Smirnov O. I., Yakovlev N. O. (2019). Construction of an optoelectronic system for integrated monitoring of aircraft structures made using polymer composite materials. Konstruktsii iz kompozitsionnyh materialov, (1), 65 – 73. [in Russian language]
19. Bochkova S. D., Volkovskiy S. D., Efimov M. E. et al. (2020). Method for localizing exposure in a composite material using fiber-optic acoustic emission sensors. Pribory i tekhnika eksperimenta, (4), 73 – 77. [in Russian language]
20. Stepanova L. N., Chernova V. V. (2017). Analysis of the structural coefficients of acoustic emission signals under static loading of cfrp specimens with impact damage. Kontrol'. Diagnostika, (6), 34 – 41. [in Russian language] DOI: 10.14489/td.2017.06.pp.034-041
21. Stepanova L. N., Chernova V. V., Kabanov S. I. (2018). Analysis of the mode composition of the acoustic emission signals with simultaneous thermal and static loading of specimens of carbon fiber T800. Kontrol'. Diagnostika, (11), 4 – 13. [in Russian language] DOI: 10.14489/td.2018.11.pp.004-013

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2024.06.pp.018-027

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.06.pp.018-027

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования