Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 11 | 2024
2024, 06 June

DOI: 10.14489/td.2024.06.pp.060-071

Kleizer M. P., Kuvshinnikov V. S., Kovshov E. E.
CONVOLUTIONAL NEURAL NETWORKS USAGE FOR RASTER IMAGE PROCESSING IN NON-DESTRUCTIVE TESTING
(pp. 60-71)

Abstract. An overview of Russian and foreign literature sources on the use of computer vision technologies and convolutional artificial neural networks in technological operations of visual control is presented. Methods and algorithms review of computer vision and artificial neural network models used by the authors of scientific articles, methods of preprocessing and expanding the initial data set for models training under consideration and verifying the correctness of machine vision algorithms is carried out. Possible approaches for automating the assessment of visual quality control in various fields of industry are highlighted, research results, results of machine vision algorithms, neural network models, their accuracy and efficiency indicators are presented, as well as areas and possible scenarios for the application of the presented algorithmic solutions. Some results of machine vision algorithms, neural network models, their accuracy and efficiency indicators are presented.

Keywords: testing automation, defect detection, convolutional artificial neural networks, non-destructive testing, machine vision, NDE 4.0.

M. P. Kleizer (Federal State Budget Education Institution of Higher Education “MIREA – Russian Technical University”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. S. Kuvshinnikov, E. E. Kovshov (Joint-Stock Company “Research and Development Institute of Construction Technology – Atomstroy”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Kovshov E. E., Kuvshinnikov V. S., Kazakov D. F. (2023). The use of digital twins models while a radiographic image formation in a virtual reality environment. Kontrol'. Diagnostika, 26(9), 4 – 15. [in Russian language] DOI: 10.14489/td.2023.09. pp.004-015
2. Beskopylny A. N., Shcherban’ E. M., Stel’makh S. A. et al. (2023). Discovery and Classification of Defects on Facing Brick Specimens Using a Convolutional Neural Network. Applied Sciences, 13.
3. Xu S., Deng J., Huang Y. et al. (2022). Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4. Entropy, 24.
4. Hongyan Xu, Xiu Su, Yi Wang et al. (2019). Automatic Bridge Crack Detection Using a Convolutional Neural Network. Applied Sciences, 9(14).
5. Amini A., Gan T.-H. (2023). A Computer Vision-Based QualityAssessment Technique for R2RPrinted Silver Conductors on FlexiblePlastic Substrates. Applied Sciences, 13(2).
6. Du F.-J., Jiao S.-J. (2022). Improvement of Light-weight Convolutional Neural Network Model Based on YO-LO Algorithm and Its Research in Pavement Defect Detection. Sensors, 22(9).
7. Emel'yanova M. G., Smailova S. S., Baklanova O. E. (2023). Detection of surface defects in welded joints during visual inspection using machine methods. Komp'yuternaya optika, 47(1), 112 ‒ 117. [in Russian language] DOI: 10.18287/2412-6179-CO-1137.
8. Vasil'ev M. E., Kos'kin A. V., Shalimov A. S. (2024). Automated defect detection on product surfaces based on convolutional neural networks. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, 21(3), 30 – 36. [in Russian language] DOI: 10.14489/vkit.2024.03.pp.030-036
9. Li L. F., Ma W. F., Li L., Lu C. (2019). Research on Detection Algorithm for Bridge Cracks Based on Deep Learning. Acta Automatica Sinica, 45(9), 1727 – 1742.
10. Mingxing Tan, Ruoming Pang, Quoc V. Le (2020). EfficientDet: Scalable and Efficient Object Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). arXiv:1911.09070 [cs.CV].
11. Shu Liu, Lu Qi, Haifang Qin et al. (2018). Path Aggregation Network for Instance Segmentation. arXiv:1803.01534 [cs.CV].
12. Nixon M., Aguado A. (2020). Feature extraction and image processing for computer vision. 4th ed. Amsterdam: Elsevier. ISBN: 978-0-12-814976-8.
13. Korchagin V. D., Kuvshinnikov V. S., Kovshov E. E. (2024). Criteria analysis of radiation non-destructive testing data processing models. International Journal of Open Information Technologies, 12(4), 23 ‒ 31. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.06.pp.060-071

and fill out the  form  

 

 
Rambler's Top100 Яндекс цитирования