Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
09 | 01 | 2025
2024, 08 August

DOI: 10.14489/td.2024.08.pp.017-027

Emelyanova M. S., Murav’ev V. V.
MULTILEVEL GRADIENT GENERATOR FOR STUDYING THE EFFECT OF HYPOMAGNETIC FIELDS ON BIOLOGICAL OBJECTS
(pp. 17-27)

Abstract. A multilevel generator has been developed based on a gradient magnetic field source using square Helmholtz coils, which makes it possible to create changes in the level of the magnetic field in the horizontal plane with a constant vertical magnetic component. The error in setting the generated magnetic field can reach 4 %, which is comparable to natural fluctuations of the Earth's magnetic field. The generator provides experiments with biological objects in the working area of square Helmholtz coils with a volume of at least 0.25 m3, reducing the experiment time by more than five times. The developed design options for a multilevel generator make it possible to conduct a variety of magnetobiological experiments: in a uniform and gradient magnetic field, with magnetic field inversion and transition through the zero value, in combined magnetic fields.

Keywords: magnetic field, Helmholtz coils, multilevel generator, magnetobiological experiments.

M. S. Emelyanova (Kalashnikov Izhevsk State Technical University, Izhevsk, Russia)
V. V. Murav’ev (Kalashnikov Izhevsk State Technical University, Izhevsk, Russia, Udmurt Federal Research Center Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia)

1. Syas'ko V. A., Golubev S. S., Ivkin A. E. (2019). Experience in developing tools for measuring the thickness of functional coatings on firearms. Vestnik IzhGTU im. M. T. Kalashnikova, 22(3), 11 ‒ 18. [in Russian language] DOI: 10.22213/2413-1172-2019-3-11-18. EDN XNAYRV.
2. Pivovarov V. Yu., Gafarova V. A., Kuzeev I. R. (2022). Possibility of remote determination of the condition of structural materials of oil and gas industry facilities. Neftegazovoe delo, 20(3), 127 ‒ 141. [in Russian language] DOI: 10.17122/ngdelo-2022-3-127-141. EDN TTOGGY.
3. Sandomirskiy S. G., Val'ko A. L., Rudenko S. P. (2020). Analysis of the possibility of non-destructive testing of the carburizing depth of 18khgt steel using pole magnetization. Kontrol'. Diagnostika, Vol. 23 267(9), 18 ‒ 25. [in Russian language] DOI: 10.14489/td.2020.09.pp.018-025. EDN QDDWZV.
4. Markov A. A., Maksimova E. A. (2019). Analysis of the effectiveness of ultrasonic and magnetic channels of flaw detection complexes when inspecting rails. Vestnik IzhGTU im. M. T. Kalashnikova, 22(2), 22 ‒ 32. [in Russian language] DOI: 10.22213/2413-1172-2019-2-22-32. EDN HNQVES.
5. Antipov A. G., Markov A. A. (2020). Dependence of the rail mfl testing data on the speed according to the results of computer simulation and experiment. Kontrol'. Diagnostika, Vol. 23 270(12), 24 ‒ 33. [in Russian language] DOI: 10.14489/td.2020.12.pp.024-033. EDN DRKSIL.
6. Sandomirskiy S. G. (2020). Non-destructive magnetic testing of the physical and mechanical properties of mission-critical mounting components made of 30HGSA steel. Kontrol'. Diagnostika, (4), 4 ‒ 13. [in Russian language] DOI: 10.14489/td.2020.04.pp.004-013. EDN ZXALRU.
7. Fedosyuk V. M. (2021). Experimental Installation for Determination of Attenuation Coefficient of Permanent Magnetic Field by Protective Materials. Devices and Methods of Measurements, 12(1), 7 ‒ 12. DOI: 10.21122/2220-9506-2021-12-1-7-12. EDN QFNHHN.
8. Lomaev G. V., Ryabov Yu. G., Emel'yanova M. S. (2013). Geomagnetic field factor in reinforced concrete structures. Intellektual'nye sistemy v proizvodstve, 22(2), 181 – 184. [in Russian language]
9. Husainov Sh. G. (2020). Electromagnetism and waves. Moscow: RGAZI ‒ MSKHA im. K. A. Timiryazeva. [in Russian language] DOI: 10.34677/2020.007. EDN MFHMBF.
10. Shibanov S. E., Yashchenko S. G., Rybalko S. Yu. (2021). Electromagnetic environment created by mobile communications as a risk factor for increasing the prevalence of circulatory system diseases. Analiz riska zdorov'yu, (3), 78 ‒ 84. [in Russian language] DOI: 10.21668/health.risk/2021.3.07. EDN FXDDON.
11. Titov E. V., Soshnikov A. A., Migalev I. E. (2020). Automation of the selection of protective measures to ensure electromagnetic. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta, 187(5), 166 ‒ 175. [in Russian language] EDN EFQRZR.
12. Lomaev G. V., Emel'yanova M. S. (2020). Study of a solenoid as a source of a uniform magnetic field in magnetobiological experiments. Intellektual'nye sistemy v proizvodstve, 18(4), 47 ‒ 53. [in Russian language] DOI: 10.22213/2410-9304-2020-47-53.
13. Podol'skaya N. S., Zagorodneva K. A., Popov V. A. (2022). Installation for the treatment of oncological diseases based on a pulsed electromagnetic field. Elektrichestvo, (11), 64 ‒ 72. [in Russian language] DOI: 10.24160/0013-5380-2022-11-64-72. EDN GAIJJE.
14. Artamonov A. A., Kartashova M. K., Plotnikov E. V., Konstantinova N. A. (2019). Hypomagnetic conditions: modeling methods and impact assessment. Meditsina ekstremal'nyh situatsiy, 21(3), 357 ‒ 370. [in Russian language] EDN YGPTPH.
15. Volkovitskiy A. K., Gol'din D. A., Karshakov E. V., Pavlov B. V. (2018). Structure of magnetic gradient measuring systems. Datchiki i sistemy, 228(8‒9), 27 ‒ 32. [in Russian language] EDN YOUTUT.
16. Blazhkova E. N., Badashev V. V., Kremenskoy P. V. et al. (2022). Control device for controlling the magnetic field of Helmholtz coils. Inzhenerniy vestnik Dona, 85(1), 161 ‒ 167. [in Russian language] EDN RLDBIY.
17. Tsybin Yu. N. (2021). Admissibility diagnostics of using a foerster probe as part of a magnetometer. Kontrol'. Diagnostika, Vol. 24 275(5), 40 ‒ 49. [in Russian language] DOI: 10.14489/td.2021.05.pp.040-049. EDN NALBST.
18. Prishchepov S. K., Vlaskin K. I., Yamileva Z. M. (2013). Geomagnetic field stabilization system in a given volume. Ekologicheskie sistemy i pribory, (3), 54 ‒ 59. [in Russian language] EDN SJMRGR.
19. Zhelamskiy M. V. (2011). Magnetic position and orientation sensor with six degrees of freedom for controlling moving objects. Mekhatronika, avtomatizatsiya, upravlenie, (6), 75 ‒ 78. [in Russian language] EDN NUYXBN.
20. Milovzorov A. G., Shaposhnikov A. M., Zhilyaev Yu. P., Milovzorov G. V. (2010). Software-controlled systems for generating rotating magnetic fields. Vestnik UGATU, Vol. 14 36(1), 56 ‒ 61. [in Russian language]

 

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.08.pp.017-027

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования