Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2024, 10 октябрь (October)

DOI: 10.14489/td.2024.10.pp.016-023

Федотов М. Ю.
МЕТОДЫ ДИАГНОСТИКИ КОМПОЗИТНЫХ КОНСТРУКЦИЙ ВОЛОКОННО-ОПТИЧЕСКИМИ ДАТЧИКАМИ
(c. 16-23)

Аннотация. Обоснована актуальность применения и приведены результаты исследований методов и средств непрерывной диагностики композитных конструкций точечными, квазираспределенными и распределенными волоконно-оптическими датчиками. Представлены математическое описание и результаты теоретических исследований метода двух оптических волокон для одновременного контроля деформации и температуры, метода контроля напряжений композитных конструкций интегрированными волоконно-оптическими датчиками деформации и акустической эмиссии. Предложен метод оптического контроля, позволяющий снизить погрешность определения деформации в два раза за счет минимизации микропроскальзываний и повышения адгезии на границе раздела защитное покрытие датчика – полимерная матрица композита путем специальной обработки оптических волокон в растворе полисульфона в диметилформамиде до интеграции в материал. Экспериментальные исследования разработанных методов подтвердили адекватность предложенных математических моделей на практике. По результатам проведенных исследований разработаны технологии и приборное обеспечение для оптического контроля широкого класса композитных конструкций в процессе испытаний и эксплуатации, в том числе в условиях Крайнего Севера и воздействия высоковольтного молниевого разряда.

Ключевые слова:  непрерывная оптическая диагностика, композитная конструкция, метод двух оптических волокон, метод непрерывного контроля напряжений, волоконно-оптический датчик деформации и температуры, волоконная брэгговская решетка, волоконно-оптический датчик акустической эмиссии, Крайний Север, высоковольтный молниевый разряд.

 

Fedotov M. Yu.
METHODS FOR DIAGNOSTICS OF COMPOSITE STRUCTURES BY FIBER OPTICAL SENSORS
(pp. 16-23)

Abstract. The paper substantiates the relevance of the application and presents the results of researches of methods and means of continuous diagnostics of composite structures using point, quasi-distributed and distributed fiber-optic sensors. A mathematical description and results of theoretical researches of the method of two optical fibers for simultaneous measuring of deformation and temperature, a method of testing stresses of composite structures with integrated fiber-optic strain sensors and acoustic emission are presented. An optical testing method has been proposed that makes it possible to reduce the error in determining deformation by half by minimizing microslippage and increasing adhesion at the interface between «the protective coating of the sensor and the polymer matrix of the composite» through special treatment of optical fibers in a solution of polysulfone in dimethylformamide before integration into the material. Experimental researches of the developed methods confirmed the adequacy of the proposed mathematical models in practice. Based on the results of the research, technologies and instrumentation have been developed for optical monitoring of a wide class of composite structures during testing and operation, including in the conditions of the Far North and exposure to high-voltage lightning discharges.

Keywords: continuous optical diagnostics, composite design, two-optical fiber method, method of testing stresses, fiber-optic strain and temperature sensor, fiber Bragg grating, fiber-optic acoustic emission sensor, Far North, high-voltage lightning discharge.

Рус

М. Ю. Федотов (Институт автоматики и электрометрии Сибирского отделения Российской академии наук (ИАиЭ СО РАН), Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

M. Yu. Fedotov (Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences (IAiE SB RAS), Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Гуляев И. Н., Павловский К. А. Высокомодульные углепластики для изделий гражданской авиационной техники: обзор // Труды ВИАМ. 2023. № 3(121). С. 95 ‒ 106. DOI: 10.18577/2307-6046-2023-0-3-95-106
2. Старцев В. О., Антипов В. В., Славин А. В., Горбовец М. А. Современные отечественные полимерные композиционные материалы для авиастроения: обзор // Авиационные материалы и технологии. 2023. № 2(71). С. 122 ‒ 144. DOI: 10.18577/2713-0193-2023-0-2-122-144
3. Гуренко А. В. Полимерные композиционные материалы в аэрокосмической промышленности // Научный аспект. 2024. Т. 6, № 4. С. 687 ‒ 695.
4. Ефремова Л. С., Чемакина Т. Л. Применение бетона и железобетона в корпусных конструкциях // Фундаментальные и прикладные проблемы техники и технологии. 2023. № 4(360). С. 131 ‒ 136. DOI: 10.33979/2073-7408-2023-360-4-131-136
5. Курников Д. В. Перспективы сборного железобетона для жилищного строительства: конструктивные решения с широким шагом несущих поперечных стен // Жилищное строительство. 2023. № 10. С. 14 ‒ 19. DOI: 10.31659/0044-4472-2023-10-14-19
6. Ялкапова М., Ходжамаммедов Г., Амандурдыев Ы., Дурдыева Г. Возведение монолитных бетонных конструкций // Интернаука. 2023. № 46-1(316). С. 10 ‒ 11.
7. Тепловой контроль композитных конструкций в условиях силового и ударного нагружения / В. В. Клюев, О. Н. Будадин, Е. В. Абрамова и др. М.: Спектр, 2017. 199 с. ISBN 978-5-4442-0138-1.
8. Попов А. В., Волошина В. Ю., Журавский К. А., Лабина М. А. Акустико-эмиссионный способ диагностики конструкций из композиционных материалов на основе инвариантов // Advanced Engineering Research (Rostov-on-Don). 2022. V. 22, No. 4. P. 331 ‒ 337. DOI: 10.23947/2687-1653-2022-22-4-331-337
9. Серьезнов А. Н., Степанова Л. Н., Кабанов С. И. и др. Локация сигналов акустической эмиссии в образцах из дюралюминия и углепластика с использованием антенны, состоящей из волоконно-оптических датчиков и пьезопреобразователей // Контроль. Диагностика. 2021. Т. 24, № 2(272). С. 18 ‒ 29. DOI: 10.14489/td.2021.02.pp.018-029
10. Терентьев В. С., Достовалов А. В., Серьезнов А. Н. и др. Регистрация сигналов акустической эмиссии в композитных материалах волоконно-оптическими датчиками на основе ФС-лазерной записи // Материалы 9-го Международного семинара по волоконным лазерам 2020, Новосибирск, 20 – 24 сентября 2020 г. Новосибирск: Институт автоматики и электрометрии СО РАН, 2020. С. 205‒206. DOI: 10.31868/RFL2020.205-206
11. Budadin O., Kozelskaya S., Vavilov V., et al. Theoretical and Experimental Studies of Structural Health Monitoring of Carbon Composites with Integrated Optical Fiber Sensors Based on Fiber Bragg Gratings // Journal of Nondestructive Evaluation. 2021. V. 40, No. 4. DOI: 10.1007/s10921-021-00822-5
12. Федотов М. Ю., Васильев С. А. Методические аспекты оценки чувствительности волоконных брэгговских решеток к механическому и тепловому воздействиям для систем оптического контроля полимерных композитов // Контроль. Диагностика. 2023. Т. 26, № 12(306). С. 13 ‒ 23. DOI: 10.14489/td.2023.12.pp.013-023
13. Федотов М. Ю. Теоретические исследования встроенной волоконно-оптической системы контроля деформации и температуры полимерных композитов // Контроль. Диагностика. 2023. Т. 26, № 5(299). С. 14 ‒ 25. DOI: 10.14489/td.2023.05.pp.014-025
14. Shishkin V. V., Terentyev V. S., Kharenko D. S., et al. Experimental Method of Temperature and Strain Discrimination in Polymer Composite Material by Embedded Fiber-Optic Sensors Based on Femtosecond-Inscribed FBGs // Journal of Sensors. 2016. V. 2016. P. 3230968. DOI: 10.1155/2016/3230968
15. Федотов М. Ю., Гавриков М. Ю., Белов П. А. Алгоритмы мониторинга композитных конструкций оптоволоконными датчиками // Сб. тр. науч.-техн. конф. «Прочность конструкций летательных аппаратов», г. Жуковский, ФГУП «ЦАГИ», 8–9 дек. 2016 г. Жуковский, 2016. 2 с.
16. Гуняева А. Г., Чурсова Л. В., Федотов М. Ю., Черфас Л. В. Исследование углепластика с наномодифицированным молниезащитным покрытием и системой встроенного контроля на основе волоконных брэгговских решеток // Вопросы материаловедения. 2016. № 1(85). С. 80 ‒ 91.
17. Евдокимов А. А., Венедиктова М. А., Славин А. В., Федотов М. Ю. Технология возведения арочных быстровозводимых мостовых сооружений // Материалы IX Всерос. науч.-практ. конф. Владивосток: ВУЦ ДВФУ, 2024. С. 321 ‒ 330.

Eng

1. Gulyaev I. N., Pavlovskiy K. A. (2023). High-modulus carbon fiber reinforced plastics for civil aviation products: review. Trudy VIAM, 121(3), 95 ‒ 106. [in Russian language]. DOI: 10.18577/2307-6046-2023-0-3-95-106
2. Startsev V. O., Antipov V. V., Slavin A. V., Gorbovets M. A. (2023). Modern domestic polymer composite materials for aircraft construction: a review. Aviatsionnye materialy i tekhnologii, 71(2), 122 ‒ 144. [in Russian language]. DOI: 10.18577/2713-0193-2023-0-2-122-144
3. Gurenko A. V. (2024). Polymer composite materials in the aerospace industry. Nauchniy aspekt, 6(4), 687 ‒ 695. [in Russian language]
4. Efremova L. S., Chemakina T. L. (2023). Application of concrete and reinforced concrete in hull structures. Fundamental'nye i prikladnye problemy tekhniki i technologii, 360(4), 131 ‒ 136. [in Russian language]. DOI: 10.33979/2073-7408-2023-360-4-131-136
5. Kurnikov D. V. (2023). Prospects for precast concrete for residential construction: design solutions with wide spacing of load-bearing transverse walls. Zhilishchnoe stroitel'stvo, (10), 14 ‒ 19. [in Russian language]. DOI: 10.31659/0044-4472-2023-10-14-19
6. Yalkapova M., Hodzhamammedov G., Amandurdyev Y., Durdyeva G. (2023). Construction of monolithic concrete structures. Internauka, 316(46-1), 10 ‒ 11. [in Russian language]
7. Klyuev V. V., Budadin O. N., Abramova E. V. et al. (2017). Thermal control of composite structures under force and shock loading conditions. Moscow: Spektr. [in Russian language] ISBN 978-5-4442-0138-1.
8. Popov A. V., Voloshina V. Yu., Zhuravskiy K. A., Labina M. A. (2022). Acoustic emission method for diagnosing structures made of composite materials based on invariants. Advanced Engineering Research, 22(4), 331 ‒ 337. Rostov-on-Don. DOI: 10.23947/2687-1653-2022-22-4-331-337
9. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. et al. (2021). Acoustic emission signals location in duralumin and carbon fiber samples by optical fiber and piezoelectric transducer sensors antenna. Kontrol'. Diagnostika, Vol. 24 272(2), 18 ‒ 29. [in Russian language]. DOI: 10.14489/td.2021.02.pp.018-029
10. Terent'ev V. S., Dostovalov A. V., Ser'eznov A. N. et al. (2020). Registration of acoustic emission signals in composite materials with fiber-optic sensors based on FS laser recording. Proceedings of the 9th International Workshop on Fiber Lasers 2020, 205 – 206. Novosibirsk: Institut avtomatiki i elektrometrii SO RAN. [in Russian language]. DOI: 10.31868/RFL2020.205-206
11. Budadin O., Kozelskaya S., Vavilov V. et al. (2021). Theoretical and Experimental Studies of Structural Health Monitoring of Carbon Composites with Integrated Optical Fiber Sensors Based on Fiber Bragg Gratings. Journal of Nondestructive Evaluation, 40(4). DOI: 10.1007/s10921-021-00822-5
12. Fedotov M. Yu., Vasil'ev S. A. (2023). Methodical aspects of evaluating the sensitivity of fiber bragg gratings to mechanical and thermal effects for optical testing systems of polymer composites. Kontrol'. Diagnostika, Vol. 26 306(12), 13 ‒ 23. [in Russian language]. DOI: 10.14489/td.2023.12.pp.013-023
13. Fedotov M. Yu. (2023). Theoretical researches of the embedded fiber-optic system of testing deformation and temperature of polymer composites. Kontrol'. Diagnostika, Vol. 26 299(5), 14 ‒ 25. [in Russian language]. DOI: 10.14489/td.2023.05.pp.014-025
14. Shishkin V. V., Terentyev V. S., Kharenko D. S. et al. (2016). Experimental Method of Temperature and Strain Discrimination in Polymer Composite Material by Embedded Fiber-Optic Sensors Based on Femtosecond-Inscribed FBGs. Journal of Sensors, 2016. DOI: 10.1155/2016/3230968
15. Fedotov M. Yu., Gavrikov M. Yu., Belov P. A. (2016). Algorithms for monitoring composite structures using fiber optic sensors. Collection of proceedings of the scientific and technical conference “Strength of aircraft structures”. Zhukovskiy. [in Russian language]
16. Gunyaeva A. G., Chursova L. V., Fedotov M. Yu., Cherfas L. V. (2016). Study of carbon fiber reinforced plastic with a nanomodified lightning protection coating and a builtin control system based on fiber Bragg gratings. Voprosy materialovedeniya, 85(1), 80 ‒ 91. [in Russian language]
17. Evdokimov A. A., Venediktova M. A., Slavin A. V., Fedotov M. Yu. (2024). Technology of construction of arched quickly erected bridge structures. Materials of the IX All-Russian Scientific and Practical Conference, 321 – 330. Vladivostok: VUTs DVFU. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2024.10.pp.016-023

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.10.pp.016-023

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования