Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
23 | 12 | 2024
2024, 09 September

DOI: 10.14489/td.2024.09.pp.004-023

Rastegaev I. A., Rastegaeva I. I., Merson D. L., Ivanov V. I.
MODERN POSSIBILITIES OF THE ACOUSTIC EMISSION METHOD IN ASSESSING THE TECHNICAL CONDITION OF INDUSTRIAL EQUIPMENT: OVERVIEW AND APPLICATION SCHEMES
(pp. 4-23)

Abstract. The systematization and generalization of literature data on possible areas of application of the acoustic emission method (AE) for non-destructive testing, assessment of damage and technical condition of industrial equipment has been carried out. The classification of the acoustic emission method according to the main eleven directions of its application in industry is proposed: currently and in the near future. The known descriptions of methodological and algorithmic solutions are reduced to one or more generalizing schemes for the implementation of the method in each of the established areas of its application. The implemented and potential capabilities of the AE method are described, as well as the advantages and limitations that must be taken into account when solving production tasks.

Keywords: non-destructive testing, technical diagnostics, acoustic emission, application schemes.

I. A. Rastegaev, I. I. Rastegaeva, D. L. Merson (Togliatti State University, Togliatti, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , С Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. I. Ivanov (JSC “STC “Industrial Safety”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

1. Ivanov V. I., Barat V. A. (2017). Acoustic emission diagnostics: a handbook. Moscow: ID «Spektr». [in Russian language]
2. Ivanov V. I. (1980). Application of acoustic emission method for non-destructive testing and materials research: a review. Defektoskopiya, (5), 65 ‒ 84. [in Russian language]
3. Ivanov V. I. (1984). Acoustic Emission: Some Problems, Tasks and Solutions. NDT International, 17(6), 323 ‒ 328.
4. Getman A. F. (1999). The concept of “leak before failure” for vessels and pipelines of nuclear power plants. Moscow: Energoatomizdat. [in Russian language]
5. Drobot Yu. B., Greshnikov V. A., Bagachev V. N. (1989). Acoustic contact leak detection. Moscow: Mashinostroenie. [in Russian language]
6. Elizarov S., Bardakov V., Shimanskiy A. et al. (2019). UNISCOPE: Instrument Integrating NDT Methods. In Springer Proceedings in Physics, 65 – 74. Springer Science and Business Media. LLC.
7. Kaewwaewnoi W., Prateepasen A., Kaewtrakulpong P. (2005). Measurement of Valve Leakage Rate using Acoustic Emission. Electronics, Computer, Telecommunications and Information Technology, 3 ‒ 6.
8. Elizarov S. V., Barat V. A., Shchelakov D. A. (2012). Checking the tightness of shut-off valves using a portable multifunctional device “UNISCOPE”. V mire nerazrushayushchego kontrolya, 55(1), 22 ‒ 24. [in Russian language]
9. Xu C., Han G., Gong P., Zhang L., Chen G. (2016). Quantification of Internal Air Leakage in Ball Valve using Acoustic Emission Signals. 19th World Conference on Non-Destructive Testing (WCNDT-2016). e-Journal of Nondestructive Testing, 21(7). Retrieved from https://www.ndt.net/?id=19328
10. Sivov I. E., Sorokin A. V., Suholitko A. A. et al. (2015). Assessment of the degree of tightness of DN800 ball valves installed at the Portovaya compressor station. V mire nerazrushayushchego kontrolya, 1(3), 34 ‒ 37. [in Russian language]
11. Meland E., Thornhill N. F., Lunde E., Rasmussen M. (2012). Quantification of Valve Leakage Rates. American Institute of Chemical Engineers Journal, 58, 1181 – 1193.
12. Ye G.-Y., Xu K.-J., Wu W.-K. (2021). Multi-Variable Classification Model for Valve Internal Leakage Based on Acoustic Emission Time–Frequency Domain Characteristics and Random Forest. Review of Scientific Instruments, 92(2).
13. Nefed'ev E. F. (2013). Using the acoustic emission method using spectral analysis of signals to determine leak parameters in ITER pipelines. Sovremennoe mashinostroenie. Nauka i obrazovanie, (3), 347 ‒ 355. [in Russian language]
14. Lapshin B. M., Ovchinnikov A. L. (2004). A Cospectral Method for Leak Detection in One-Way Access Pipelines. Russian Journal of Nondestructive Testing, 40, 587 ‒ 592.
15. Rastegaev I. A., Danyuk A. V., Vinogradov A. Y. et al. (2013). Location of Noise-Like Sources of Acoustic Emissions Using the Spectral Similarity Method. Russian Journal of Nondestructive Testing, 49, 553 – 561.
16. Elizarov S. V., Barat V. A., Shimanskiy A. G. (2014). New generation intelligent acoustic emission system SMART. V mire nerazrushayushchego kontrolya, 65(3), 26 ‒ 29. [in Russian language]
17. Alekseev V. I. (2013). Correlation-extremal method for estimating the coordinates of oil leak locations in main oil pipelines. Promyshlennaya i ekologicheskaya bezopasnost', 92(2), 92 – 99. [in Russian language]
18. Firsov A. A., Terentyev D. A. (2014). An algorithm to improve the location accuracy of correlation leak detection based on the analysis of the phase of cross spectrum. Kontrol'. Diagnostika, (8), 23 – 27. [in Russian language] DOI: 10.14489/td.2014.08.pp.023-027
19. Vladimirskiy A. A., Vladimirskiy I. A., Semenyuk D. N. (2005). Refinement of the pipeline diagnostic model to increase the reliability of leak detection. Akusticheskiy vestnik, 3(8), 3 ‒ 16. [in Russian language]
20. Rastegaev I. A., Khrustalev A. K., Danyuk A. V. et al. (2023). Application of the Acoustic Emission Method to Ranking Fatigue Damage in the Material of the Trunnions of Drying Cylinders in Cardboard- and Paper-Making Machines. Russian Journal of Nondestructive Testing, 59(9), 923 ‒ 936.
21. Rastegaev I. A., Gomera V. P., Tyupin S. A. et al. (2018). Estimating the Probability of Detecting a Delamination in the Wall of Equipment Depending on the Set of Used Methods of Nondestructive Testing and Ways of Its Improvement. Russian Journal of Nondestructive Testing, 54(9), 619 ‒ 629.
22. Roberts T., Talebzadeh M. (2005). Fatigue Life Prediction Based on Crack Propagation and Acoustic Emission Count Rates. Journal of Constructional Steel Research, 59, 679 – 694.
23. Gomera V. P., Rastegaev I. A. (2015). The possibility of the early identification of delamination in the walls of pressure vessels by the ultrasonic and acoustic emission inspection. Kontrol'. Diagnostika, (1), 82 – 89. [in Russian language] DOI: 10.14489/td.2015.01.pp.082-089
24. Terentyev D. A., Zhukov A. V. (2011). New methods of using normal waves in the inspection of thin-walled objects of large geometric dimensions. Part 2. Integral thickness gauging. V mire nerazrushayushchego kontrolya, 53(3), 68 ‒ 70. [in Russian language]
25. Terentyev D. A. (2014). Integral thickness gauging. V mire nerazrushayushchego kontrolya, 63(1), 59 ‒ 62. [in Russian language]
26. Viktorov I. A. (1966). Physical basis of the use of ultrasonic Rayleigh and Lamb waves in technology. Academy of Sciences of the USSR. Acoustic Institute. Moscow: Nauka. [in Russian language]
27. Murav'eva O. V., Murav'ev V. V., Strizhak V. A. et al. (2017). Acoustic waveguide testing of linearly extended objects. Ministry of Education and Science of the Russian Federation, Federal State Budgetary Educational Institution of Higher Education "Izhevsk State Technical University named after. M. T. Kalashnikov." Novosibirsk: Izdatel'stvo SO RAN. [in Russian language]
28. Seco F., Jiménez A. R. (2012). Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides. Ultrasonic waves. Chapter 1. Intech Access Publisher, 1 ‒ 28.
29. Hamstad M. A. (2008). Comparison of Wavelet Transform and Choi-Williams Distribution to Determine Group Velocities for Different Acoustic Emission Sensors. Journal of Acoustic Emission, 26, 40 ‒ 59.
30. Hamstad M. A. (2010). On Lamb Modes as a Function of Acoustic Emission Source Rise Time. Journal of Acoustic Emission, 28, 41 ‒ 58.
31. Terentyev D. A., Bulygin K. A. (2011). New methods of using normal waves in the inspection of thin-walled objects of large geometric dimensions. Part 1. Automatic recognition of dispersion curves on the AE signal spectrogram. V mire nerazrushayushchego kontrolya, 52(2), 46 ‒ 48. [in Russian language]
32. Terentyev D. A., Barat V. A., Bulygin K. A. (2011). The Extraction Method for Dispersion Curves from Spectrograms Using Hough Transform. Journal of Acoustic Emission, 29, 232 ‒ 242.
33. Terentyev D. A. (2013). Identification of acoustic emission signals using time-frequency analysis. V mire nerazrushayushchego kontrolya, 60(2), 51 ‒ 55. [in Russian language]
34. Rastegaeva I. I., Rastegaev I. A., Agletdinov E. A., Merson D. L. (2022). Comparison of the main time-frequency transformations of spectral analysis of acoustic emission signals. Frontier Materials & Technologies, (1), 49 ‒ 60.
35. Shiotani T., Hashimoto K., Okude N. et al. (2018). Assessment of Infrastructures by Rainy Induced AE Tomography with Wave Velocity and Attenuation Rate. Journal of Acoustic Emission, 35, S402 ‒ S411.
36. Schubert F. (2004). Basic Principles of Acoustic Emission Tomography. Journal of Acoustic Emission, 22, 147 ‒ 158.
37. Schubert F. (2006). Tomography Techniques for Acoustic Emission Monitoring. 9th European Conference on NDT (ECNDT 2006), 1 – 13. Berlin.
38. Momoki S., Kobayashi Y., Shiotani T. (2014). Verification of Source Location Accuracy by AE Tomography. 6th International Conference on Acoustic Emission AEWG-56 Progress in acoustic emission. Salt Lake City, 227 – 232.
39. Kobayashi Y., Nakamura K., Oda K. (2022). New Algorithm of Acoustic Emission Tomography that Considers Change of Emission Times of AE Events During Identification of Elastic Wave Velocity Distribution. Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability. London: CRC Press.
40. Kuznetsov N. S. (1998). Theory and practice of non-destructive testing of products using acoustic emission: a methodological manual. Moscow: Mashinostroenie. [in Russian language]
41. Chentsov V. P. (2014). Acoustic emission during elastoplastic deformation of structural materials and experience of its application in non-destructive testing. Tomsk: Izdatel'stvo Tomskogo politekhnicheskogo universiteta. [in Russian language]
42. Agletdinov E. A., Yasnikov I. S. (2023). Application of Recurrence Quantification Analysis of Acoustic Emission Time Series to Analysis of a Plastic Flow of Metals. Physical Review E, 108(4).
43. Murav'ev V. V., Stepanova L. N., Chaplygin V. N. et al. (2002). Study of Growth of Fatigue Cracks in Metallic Samples Using Methods of Acoustic Emission and Strain Measurement. Russian Journal of Nondestructive Testing, 38, 857 ‒ 864.
44. Potekaev A. I., Plotnikov V. A. (2004). Acoustic energy dissipation during thermoelastic martensitic transformations. Tomsk: Izdatel'stvo NTL. [in Russian language]
45. Van Bohemen S. M. C. (2004). An Acoustic Emission Study of Martensitic and Bainitic Transformations in Carbon Steel. Delft: Delft University Press.
46. Kolmakov A. G., Terent'ev V. F., Bakirov M. B. (2000). Methods for measuring hardness: handbook. Moscow: IntermetInzhiniring. [in Russian language]
47. Linderov M. L., Segel С., Weidner A. et al. (2018). Study of Deformation Phenomena in TRIP/TWIP Steels by Acoustic Emission and Scanning Electron Microscopy. Physics of Metals and Metallography, 119(4), 388 – 395.
48. Merson D. L., Yasnikov I. S., Brilevsky A. I. et al. (2023). The Effect of Temperature and Strain Rate on Tensile Behavior of the Mg‒2Zn‒0.1Ca Alloy. Letters on Materials, 13(3), 185 ‒ 190.
49. Merson D. L. (2006). Application of the acoustic emission method in physical materials science. Promising materials. Structure and methods of research: textbook. Chapter 12. TGU, MISiS. Moscow: Nauka. [in Russian language]
50. Vinogradov A., Merson D., Patlan V., Hashimoto S. (2003). Effect of Solid Solution Hardening and Stacking Fault Energy on Plastic Flow and Acoustic Emission in Cu–Ge Alloys. Materials Science and Engineering, A341, 57 – 73.
51. Li X., Bashkov O. V., Bao F. et al. (2019). The Research of the Features Destruction of the of Oxide Coatings on Aluminum Alloy by Using the Method of Acoustic Emission. Journal of Physics: Conference Series, 281(1). IOP Publishing.
52. Zhou T., Ding Y., Luo Q. et al. (2018). The Effects of Sodium Tungstate on the Characteristics of Microarc Oxidation Coating on Ti6Al4V. Journal of Materials Engineering and Performance, 27, 5489 – 5499.
53. Kostin V. N., Vasilenko O. N., Filatenkov D. Y. et al. (2015). Magnetic and Magnetoacoustic Testing Parameters of the Stressed-Strained State of Carbon Steels that were Subjected to a Cold Plastic Deformation and Annealing. Russian Journal of Nondestructive Testing, 51, 624 ‒ 632.
54. Rastegaev I. A., Merson D. L., Rastegaeva I. I., Vinogradov A. Yu. (2020). A Time-Frequency Based Approach for Acoustic Emission Assessment of Sliding Wear. Lubricants, 8(5).
55. Novikov S. A. (1993). Monitoring of galvanic nickel coatings by acoustic emission during magnetization reversal. Defektoskopiya, (5), 35 ‒ 41. [in Russian language]
56. Carpenter S. H., Higgins F. P. (1977). Sources of acoustic emission generated during the plastic deformation of 7075 aluminum alloy. Metallurgical Transactions, 8A(10), 1629 ‒ 1632.
57. Cousland S. McK., Scala C. M. (1981). Acoustic emission and microstructure in aluminum alloys 7075 and 7050. Metal Science, 15(11‒12), 610 ‒ 614.
58. Carpenter S. H., Zhu Z. (1991). Correlation of the acoustic emission and the fracture toughness of ductile nodular cast iron. Journal of Materials Science, 26, 2057 ‒ 2062.
59. Gnevko A. I., Ozerov K. G., Kazakov N. A. et al. (2002). Acoustic emission control of hydrogen peroxide stability. Ru Patent No. RU 2185619. C2. [in Russian language]
60. Gaponov V. L., Kuznetsov D. M., Zaharova M. S. (2016). Metrological aspects of acoustic emission parameters when monitoring the decomposition of hydrogen peroxide. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 84(1), 160 ‒ 166. [in Russian language]
61. Kozachenko P. N., Dubovskov V. V. (2011). Metrology of acoustic emission parameters of solvation. Fundamental'nye issledovaniya, (8), 646 ‒ 651. [in Russian language]
62. Rastegaeva I. I., Rastegaev I. A., Vikarchuk A. A. et al. (2012). Optimization of processing modes for liquid media in rotary devices based on the acoustic emission method with a feedback system. Pribory i sistemy. Upravlenie, kontrol', diagnostika, (5), 25 ‒ 31. [in Russian language]
63. Bigus G. A., Popkov Yu. S. (2011). Determining the depth of pitting corrosion and monitoring its development using the acoustic emission method. Svarka i diagnostika, (3), 5 ‒ 60. [in Russian language]
64. Lapshin B. M., Ovchinnikov A. L., Kalinichenko A. N. (2013). Application of acoustic friction emission to control the passage of in-line objects through main oil and gas pipelines. Kontrol'. Diagnostika, (9), 41 ‒ 48. [in Russian language]
65. Qin H., Li G., Chye E. U. et al. (2020). Research on noise reduction technology of bladeicing signal based on acoustic emission technology. Vestnik TOGU, 57(2), 9 ‒ 16. [in Russian language]
66. Teplinskiy Yu. A., Birillo I. N., Romantsov S. V. (2005). Hydraulic testing is an effective way to study the technical condition of pipes. Bezopasnost' truda v promyshlennosti, (3), 16 ‒ 18. [in Russian language]
67. Farhat S. A., Jordan M. K. (2010). Al-T. Combustion Oscillations Diagnostics in a Gas Turbine Using an Acoustic Emissions. Journal of Mechanical and Industrial Engineering, 4(3), 352 ‒ 357.
68. Lepihova V. A., Lyashenko N. V., Chibinev N. N., Vyal'tsev A. V. (2022). A system for monitoring combustion products of coal boilers using acoustic emission signals to prevent dangerous emergency situations. Bezopasnost' truda v promyshlennosti, (4), 18 – 23. [in Russian language]
69. Souza F. C., Franco S. D., Arencibia R. V. et al. (2019). Acoustic Emission Assessment of Measurement Errors Caused by Gaps in Chemical Composition Analyzes Carried out Using a Portable spark spectrometer. Measurement, 151(10).
70. Bao F., Bashkov O. V., Chzhan D. et al. (2023). The study of the influence of micro-arc oxidation modes on the Morphology and Parameters of an Oxide Coating on the D16AT Aluminum Alloy. Frontier Materials & Technologies, (1), 7 – 21.
71. Rastegaev I. A., Shafeev M. R., Rastegaeva I. I. et al. (2023). Cyclic Regularities of the Acoustic Emission Generation During Plasma-Electrolytic Oxidation of an Al–Mg Alloy in the Bipolar Mode. Frontier Materials & Technologies, (2), 103 ‒ 116.
72. Stepanova K. А., Kinzhagulov I. Y., Iuferev R. et al. (2019). The Results of the Defect Formation Control in Welded Joints During Friction Stir Welding by Acoustic Emission. IOP Conference Series: Materials Science and Engineering, 666(1).
73. Rauscher F. (2008). Laboratory Experiments for Assessing the Detectability of Specific Defects by Acoustic Emission Testing. Journal of Acoustic Emission, 26, 98 ‒ 108.
74. Rastegaev I. A., Danyuk A. V., Merson D. L., Vinogradov A. Yu. (2017). Educational and Research Facility for the Study of the Processes of Generation and Propagation of Acoustic Emission Waves. Inorganic Materials, Vol. 53 15, 1548 ‒ 1554.
75. Budenkov G. A., Nedzvedskaya O. V. (2004). Dynamic problems of elasticity theory as applied to problems of acoustic monitoring and diagnostics. Moscow: Fizmatlit. [in Russian language]
76. Buylo S. I. (2017). Physico-mechanical, statistical and chemical aspects of acoustic emission diagnostics. Rostov-na-Donu; Taganrog: Izdatel'stvo Yuzhnogo federal'nogo universiteta. [in Russian language]
77. Rozinov A. Y. (2005). Physical Mechanism and Features of Calculating the Bubble-Effect-Initiated Acoustic Emission in the Detection of Through-Microleakage Regions. Russian Journal of Nondestructive Testing, 41, 324 – 332.
78. Barat V. A., Terent'ev D. A., Bardakov V. V., Elizarov S. V. (2020). Analytical modeling of acoustic emission signals in thin-walled objects. Kontrol'. Diagnostika, (6), 23 ‒ 29. [in Russian language] DOI: 10.14489/td.2020.06.pp.023-029
79. Bigus G. A., Chernyh M. V. (2014). Determination of the most dangerous zones of column-type devices for installation of monitoring system sensors. Svarka i Diagnostika, (2), 42 ‒ 45. [in Russian language]
80. Bigus G. A., Chernyh M. V., Churilov A. A., Zhuravlev A. E. (2015). Analysis and selection of hardware and software for an integrated diagnostic monitoring system for monitoring hazardous areas of column-type devices. Svarka i Diagnostika, (1), 45 ‒ 50. [in Russian language]
81. Gerasimov S., Sych T., Kuleshov V. (2016). Application of Finite Elements Method for Improvement of Acoustic Emission Testing. Journal of Physics: Conference Series, 671(1).
82. Sych T., Gerasimov S., Kuleshov V. (2012). Simulation of the Propagation of Acoustic Waves by the Finite Element Method. Russian Journal of Nondestructive Testing, 48(3), 147 ‒ 152.
83. Sause M. G. R. (2011). Investigation of Pencil-Lead Breaks as Acoustic Emission Sources. Journal of Acoustic Emission, 29, 184 ‒ 196.
84. Markus M. G. R., Richler S. (2015). Finite Element Modeling of Cracks as Acoustic Emission Sources. Journal of Nondestructive Evaluation, 34(4).
85. Doronina O. A., Bakhvalov P. A., Kozubskaya T. K. (2016). Numerical Study of Acoustic Radiation Dynamics of a Rankine Vortex. Acoustical Physics, 62, 467 – 477.
86. Suvorov A. S., Korotin P. I., Sokov E. M. (2018). Finite Element Method for Simulating Noise Emission Generated by Inhomogeneities of Bodies Moving in a Turbulent Fluid Flow. Acoustical Physics, 64, 778 – 788.
87. Suvorov A. S., Sokov E. M., Artel’nyi P. V. (2014). Numerical Simulation of Acoustic Emission Using Acoustic Contact Elements. Acoustical Physics, 60, 694 – 703.
88. Tsukanova E. S. (2015). Calculation of forced vibrations of rod systems by the finite element method using a dynamic finite element. Vestnik BGTU, 46(2), 93 ‒ 103. [in Russian language]
89. Hamstad M. A. (2007). Acoustic Emission Source Location in a Thick Steel Plate by Lamb Modes. Journal of Acoustic Emission, 25, 194 ‒ 214.
90. Sych T. V., Gerasimov S. I., Kuleshov V. K. (2013). Simulation of ultrasonic wave propagation through a weld seam. Kontrol'. Diagnostika, 13, 203 ‒ 206. [in Russian language]
91. Tai J., Liu X., Wang X., Shan Y., He T. (2021). An Adaptive Localization Method of Simultaneous Two Acoustic Emission Sources Based on Energy Filtering Algorithm for Coupled Array Signal. Mechanical Systems and Signal Processing, 154.
92. Nasedkin A. V., Shikhman V. M., Zakharova S. V., Ivanilov I. V. (2006). Application of Finite-Element Methods for Calculation of Reception Systems for Acoustic-Emission Inspection. Russian Journal of Nondestructive Testing, 42(2), 83 – 91.
93. Lyapin A. A. (2018). Analysis of the contact interaction of a piezoactuator and an elastic layer in the steady-state oscillation mode based on the concentrated force method. Izvestiya vuzov. Severo-Kavkazskiy region. Estestvennye nauki, 198(2), 23 ‒ 29. [in Russian language]
94. Zelenyak A.-M., Hamstad M. A., Sause M. G. R. (2015). Modeling of Acoustic Emission Signal Propagation in Waveguides. Sensors, 15(11), 11805 ‒ 11822.
95. Grieves M. (2022). Intelligent Digital Twins and the Development and Management of Complex Systems. Digital Twin, 2(8), 1 ‒ 24.
96. Prohorov A., Lysachev M. (2020). Digital twin. Analysis, trends, world experience. Moscow: Al'yansPrint. [in Russian language]

 

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.09.pp.004-023

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования