Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 11 | 2024
2024, 09 September

DOI: 10.14489/td.2024.09.pp.024-035

Федотов М. Ю., Бабин С. А., Будадин О. Н., Козельская С. О.
ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ДИАГНОСТИКИ НАПРЯЖЕНИЙ КОМПОЗИТНЫХ КОНСТРУКЦИЙ НА ОСНОВЕ ДАННЫХ КОНТРОЛЯ ДЕФОРМАЦИИ И АКУСТИЧЕСКОЙ ЭМИССИИ ИНТЕГРИРОВАННЫМИ ВОЛОКОННО-ОПТИЧЕСКИМИ ДАТЧИКАМИ
(с. 24-35)

Abstract. This article describes the results of theoretical researches and develops a mathematical model for continuous optical non-destructive testing of stresses arising in structures made of polymer composite materials under static loads in tension and compression, using embedded point fiber-optic strain sensors based on fiber Bragg gratings and acoustic emission based on Fabry−Perot interferometer. It is theoretically justified and experimentally confirmed that the proposed model, taking into account the accepted assumptions, establishes a functional connection between the intensity of energy release during loading of a composite structure and the effective values of deformations and stresses. Using the proposed mathematical model, methods have been developed for continuous optical testing of stresses and acoustic emission pulses arising in monolithic structural elements made of carbon fiber reinforced plastic, manufactured by autoclave molding, under static loading in tension and compression.

Keywords: continuous optical non-destructive testing, polymer composite material, point fiber-optic strain sensor, fiber Bragg grating, acoustic emission method, fiber-optic acoustic emission sensor, mathematical model of optical stress testing technique, tension, compression.

M. Yu. Fedotov, S. A. Babin (Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences (IAiE SB RAS), Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. N. Budadin, S. O. Kozelskaya (Central Research Institute of Special Engineering (JSC “TSNIISM”), Khotkovo, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Startsev V. O., Antipov V. V., Slavin A. V., Gorbovets M. A. (2023). Modern domestic polymer composite materials for aircraft construction: review. Aviatsionnye materialy i tekhnologii, 71(2), 122 − 144. [in Russian language] DOI: 10.18577/2713-0193-2023-0-2-122-144
2. Timoshkov P. N., Goncharov V. A., Usacheva M. N., Hrul'kov A. V. (2022). Features of technology and polymer composite materials for the manufacture of wings of advanced aircraft: review. Trudy VIAM, 107(1), 66 − 75. [in Russian language] DOI: 10.18577/2307-6046-2022-0-1-66-75
3. Hlosta P., Strag M., Swiderski W. (2023). Non-Destructive Testing of Fiber-Reinforced Composites by Terahertz Method. Research and Review Journal of Nonde-structive Testing, 1(1). DOI: 10.58286/28215
4. Yang H., Yang L., Yang Z. et al. (2023). Ultrasonic Detection Methods for Mechanical Characterization and Damage Diagnosis of Advanced Composite Materials: a Review. Composite Structures, 324(15), article no. 117554. DOI: 10.1016/j.compstruct.2023.117554
5. Bautin A. A., Svirskiy Yu. A. (2020). Application of neural network technologies in monitoring the state of critical areas of the structure of transport aircraft. Vestnik Moskovskogo aviatsionnogo instituta, 27(4), 81 − 91. [in Russian language] DOI: 10.34759/vst-2020-4-81-91
6. Svirskiy Yu. A., Trunin Yu. P., Pankov A. V. et al. (2017). On-board monitoring systems (BMS) and prospects for using fiber-optic sensors in them. Kompozity i nanostruktury, Vol. 9 33(1), 35 − 44. [in Russian language]
7. Kalizhanova A., Kunelbayev M., Aitkulov Z. et al. (2024). Sensor Systems for Measuring Force and Temperature with Fiber-Optic Bragg Gratings Embedded in Composite Materials. Preprints 2024. DOI: 10.20944/preprints202406.1520.v1
8. Khabarov S. S., Faustov A. V., Buzhilov A. L., Lvov N. L. (2019). Algorithm for Assessing the Technical Condition of Aircraft Structures Using a Control System on Fiber Optic Sensors. International Journal of Advanced Trends in Computer Science and Engineering, 8(5), 2586 – 2590. DOI: 10.30534/ijatcse/2019/109852019
9. Ivanov V. I., Belov P. A., Nasibullin T. S. (2016). The types of the acoustic emission sources in the composite materials. Kontrol'. Diagnostika, (10), 14 − 20. [in Russian language] DOI: 10.14489/td.2016.10.pp.014-020
10. L'vov N. L., Belov P. A., Listikov A. M. (2017). Special software for calculating coordinates and impact en-ergy based on telemetry data. Certificate of state registration of a computer program No. 2017662525 of the Russian Federation. [in Russian language]
11. L'vov N. L., Volkov P. V., Denisov D. M. et al. (2021). Multichannel fiber-optic system for detecting and measuring parameters of acoustic emission signals. Ru Patent No. 2752133. Russian Federation. [in Russian language]
12. Terent'ev V. S., Dostovalov A. V., Ser'eznov A. N. et al. (2020). Registration of acoustic emission signals in composite materials with fiber-optic sensors based on FS laser recording. 9th International Workshop on Fiber Lasers 2020, 205 – 206. Novosibirsk: Institut avtomatiki i elektrometrii SO RAN. [in Russian language] DOI: 10.31868/RFL2020.205-206
13. Medvedkov O. I., Korolev I. G., Vasil'ev S. A. et al. (2004). Recording fiber Bragg gratings in a scheme with a Lloyd interferometer and modeling their spectral properties: preprint. Moscow: RAN, Nauchniy tsentr volokonnoy optiki pri Institute obshchey fiziki im. A. M. Prohorova. [in Russian language]
14. Wolf A., Dostovalov A., Bronnikov K. et al. (2022). Advances in Femtosecond Laser Direct Writing of Fiber Bragg Gratings in Multicore Fibers: Technology, Sensor and Laser Applications. Opto-Electronic Advances, 5(4). DOI: 10.29026/oea.2022.210055
15. Fedotov M. Yu., Gavrikov M. Yu., Belov P. A. (2016). Algorithms for monitoring composite structures using fiber optic sensors. Collection of proceedings of the scientific and technical conference “Strength of aircraft struc-tures”. Zhukovskiy: FGUP «TsAGI». [in Russian language]
16. Belov P. A., Lur'e S. A., Gavrikov M. Yu. (2016). Extrapolation of low-cycle fatigue of PCM to service life (second model). Sciences of Europe, 6-2(6), 10 – 15. [in Rus-sian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.09.pp.024-035

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования