Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2024, 10 October

DOI: 10.14489/td.2024.10.pp.041-051

Shilin A. N., Konovalova L. A., Bogale M. A.
INTELLIGENT SYSTEM FOR AUTOMATIC REGULATION OF WATER LEVEL IN A HPP RESERVOIR
(pp. 41-51)

Abstract. The article presents a system for automatically controlling the water level in a hydroelectric power station reservoir, taking into account the inflow and outflow of water. The inflow and outflow of water resources is measured using sensors. According to the rules for the operation of hydraulic structures, it is necessary to maintain a certain water level in the reservoir of a hydroelectric power station. Exceeding the forced headwater level (FLU) can lead to water overflowing the dam, and a drop in the water level below a certain value negatively affects the operation of the hydroelectric power station. When the maximum water level is exceeded, a spillway is carried out using a gate with a drive. The main problem of maintaining the water level in the reservoir over a long period is the optimal distribution of water resources, namely for electricity generation, water supply for housing and communal services and industrial enterprises, agriculture, maintaining the environment and fisheries and other needs. To control the automatic system, it is necessary to predict reservoir water level. Therefore, to solve this problem, it is proposed to use an artificial neural network (ANN).

Keywords: hydroelectric power station, reservoir, control and forecasting of water level in a reservoir, artificial neural network.

A. N. Shilin, L. A. Konovalova, M. A. Bogale (Volgograd State Technical University, Volgograd, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Kussul' N. N. (Ed.), Haykin S. (2006). Neural networks: a complete course. 2nd ed. Moscow: Vil'yams. [in Russian language]
2. Shilin A. N., Dement'ev S. S., Konovalova L. A., Bogale M. A. A method for automatically regulating the water level in a hydroelectric power station reservoir. Ru Patent No. 2820563. Russian Federation. [in Russian language]
3. Kozyrev A. V., Lashin A. V., Semyonov V. A., Turunin V. I. System for automatic control of water level in a hydroelectric power station reservoir. Ru Patent No. RU 2629456 С2. [in Russian language]
4. Il'ichev V. Yu., Kachurin A. V. (2021). Creating Python Programs to Explore the Mandelbrot Set. E-Scio, 56(5), 362 ‒ 371. [in Russian language]
5. Yasnitskiy L. N. (2010). Introduction to artificial intelligence. 3rd ed. Moscow: Akademiya Ko. (Higher professional education. Informatics and Computer Science). [in Russian language]
6. Goodfellow I., Bengio Y., Courville A. (2016). Deep Learning. Cambridge: MIT press.
7. Hawamdeh A., Kuisi M. Al. (2021). An Artificial Neural Network Model for Flood Forecasting, Case Study in Jordan. Solid State Technology, 64(2), 4704 ‒ 4714.
8. Gareth J., Witten D., Hastie T., Tibshirani R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer. (Springer Texts in Statistics. Book 103). DOI: 10.1007/978-1-4614-7138-7
9. Vizi Z., Batki B., Ratki L. et al. (2023). Water Level Prediction Using Long Short-Term Memory Neural Network Model for a Lowland River: A Case Study on the Tisza River, Central Europe. Environmental Sciences Europe, 35(1), Paper 92.
10. Xu J., Fan H., Luo M. et al. (2023). Transformer Based Water Level Prediction in Poyang Lake, China. Water, 15(3), 576 ‒ 581.
11. Sapitang M., Ridwan W. M., Kushiar K. F. et al. (2020). Machine learning application in reservoir water level forecasting for sustainable hydropower generation strategy. Sustainability, Vol. 12 15.
12. Shilin A. N., Konovalova L. A., Bogale M. A. (2024). Floating open water evaporation meter. Ru Patent No. 226828. Russian Federation. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.10.pp.041-051

and fill out the  form  

 

 

 
Rambler's Top100 Яндекс цитирования