Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 01 | 2025
2024, 12 декабрь (December)

DOI: 10.14489/td.2024.12.pp.004-013

Барат В. А., Марченков А. Ю., Карпова М. В., Бардаков В. В., Лепшеев Е. А., Ушанов С. В., Елизаров С. В.
ПРИМЕНЕНИЕ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ОБНАРУЖЕНИЯ ДЕФЕКТОВ РАЗНОРОДНЫХ СВАРНЫХ СОЕДИНЕНИЙ МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ
(c. 4-13)

Аннотация. Рассматривается возможность применения искусственных нейронных сетей для обнаружения сигналов в системах акустико-эмиссионного (АЭ) мониторинга. Особенность предлагаемого метода заключается в том, что данные, на основании которых обучается нейронная сеть, формируются с помощью комплексной методики, базирующейся на применении как технологии моделирования, так и измерений, проведенных в заводских условиях. В качестве объекта контроля рассматривались технологические трубопроводы с разнородными сварными соединениями. Моделирование сигналов АЭ проводилось гибридным способом: форма сигнала определяется на основании конечно-элементной модели, а амплитуды импульсов АЭ ‒ на основании физического эксперимента по испытанию образцов разнородных сварных соединений. В качестве реализаций помех использовались данные измерений на технологических трубопроводах промышленных установок. Для классификации данных применялся многослойный персептрон, архитектура которого выбиралась на основании минимизации погрешности классификации.

Ключевые слова:  разнородные сварные соединения, акустическая эмиссия, диффузионные прослойки, нейронные сети в акустической эмиссии, классификация сигналов акустической эмиссии, моделирование акустического тракта.

 

Barat V. A., Marchenkov A. Yu., Karpova M. V., Bardakov V. V., Lepsheev E. A., Ushanov S. V., Elizarov S. V.
APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR DETECTION OF DEFECTS IN DISSIMILAR WELDED JOINTS BY ACOUSTIC EMISSION METHOD
(pp. 4-13)

Abstract. The paper considers the possibility of using artificial neural networks to detect hits in acoustic emission (AE) testing. A distinctive feature of the proposed method is that the training set of the neural network is formed using a complex technique based on the application of modeling technology, on the one hand, and on calibration measurements carried out in the field, on the other. In this paper, process pipelines with dissimilar welded joints were considered as a test structure. AE signals were modeled using a hybrid method: the signal waveform was determined based on a finite element model, and the AE hits amplitudes were determined on the basis of a physical experiment on cyclic stretching of samples of dissimilar welded joints. Acoustic signals measured on the process pipelines bodies in the field condition were used as noise. A multilayer perceptron was used to classify the data, the architecture of which was selected based on the minimization of the classification error.

Keywords: dissimilar welded joints, acoustic emission, diffusion layers, neural networks in acoustic emission, classification of acoustic emission signals, waveguide modeling.

Рус

В. А. Барат(ФГБОУ ВО НИУ «МЭИ», ООО «Интерюнис-ИТ», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. Ю. Марченков, М. В. Карпова, В. В. Бардаков (ФГБОУ ВО НИУ «МЭИ», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Е. А. Лепшеев, С. В. Ушанов (ФГБОУ ВО НИУ «МЭИ», ООО «Интерюнис-ИТ», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
С. В. Елизаров (ООО «Интерюнис-ИТ», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

V. A. Barat (National Research University “MPEI”, Moscow, Russia, ”Interunis-IT” LLC, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. Yu. Marchenkov, M. V. Karpova, V. V. Bardakov (National Research University “MPEI”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
E. A. Lepsheev, S. V. Ushanov (National Research University “MPEI”, Moscow, Russia, ”Interunis-IT” LLC, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. V. Elizarov (”Interunis-IT” LLC, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Goncharov A. L., Marchenkov A. Yu., Terentyev E. V., et al. Study of Structural Non-Homogeneity Impact on Mechanical Properties of Dissimilar Weld Joints of Carbon Steel 20 and Corrosion-Resistant Austenitic 12Kh18N10T Steel // IOP Conference Series: Materials Science and Engineering. 2019. V. 681, No. 012016.
2. Барат В. А., Марченков А. Ю., Карпова М. В. и др. Применение метода акустической эмиссии для обнаружения диффузионных прослоек в разнородных сварных соединениях // Контроль. Диагностика. 2023. Т. 26, № 10(304). С. 4 ‒ 10.
3. Растегаев И. А., Ясников И. С., Растегаева И. И. и др. Оценка вероятности обнаружения акустико-эмиссионных сигналов методом амплитудной дискриминации при малом соотношении сигнал/шум // Дефектоскопия. 2022. № 3. С. 3 ‒ 12.
4. Agletdinov E., Pomponi E., Merson D., Vinogradov A. A Novel Bayesian Approach to Acoustic Emission Data Analysis // Ultrasonics. 2016. V. 72. P. 89 ‒ 94.
5. Степанова Л. Н., Чернова В. В., Рамазанов И. С. Использование методов кластеризации для обработки акустико-эмиссионной информации // Контроль. Диагностика. 2019. № 8. С. 12 ‒ 21.
6. Pomponi E., Vinogradov A. A Real-Time Approach to Acoustic Emission Clustering // Mechanical Systems and Signal Processing. 2013. V. 40, No. 2. P. 791 ‒ 804.
7. Ren F., Zhu C., Yuan Z., at al. Recognition of Shear and Tension Signals Based on Acoustic Emission Parameters and Waveform Using Machine Learning Methods // International Journal of Rock Mechanics and Mining Sciences. 2023. V. 171, No. 4.
8. Матвиенко Ю. Г., Васильев И. Е., Чернов Д. В. и др. Повышение вероятности выявления источников акустической эмиссии с помощью искусственных нейронных сетей // Дефектоскопия. 2022. № 5. С. 3 ‒ 12.
9. Kolář P., Petružálek M. A Two-Step Algorithm for Acoustic Emission Event Discrimination Based on Recurrent Neural Networks // Computers & Geosciences. 2022. V. 163.
10. Hesser D. F., Mostafavi S., Kocur G. K., Markert B. Identification of Acoustic Emission Sources for Structural Health Monitoring Applications Based on Convolutional Neural Networks and Deep Transfer Learning // Neurocomputing. 2021. V. 453. 12 p.
11. Сазонов А. А., Шелобков В. И., Иванов В. И. Влияние акустико-эмиссионного канала на параметры импульса акустической эмиссии // Контроль. Диагностика. 2020. № 6. С. 14 ‒ 22.
12. Proverbio E., Calabrese L. Artificial Neural Network Analysis of Acoustic Emission Data During Long-time Corrosion Monitoring of Post-Tensioned Concrete Structures / ed. Masayasu Ohtsu // Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete. Woodhead Publishing, 2015. P. 225 ‒ 256. (Woodhead Publishing Series in Civil and Structural Engineering).
13. ПБ 03-593‒03. Правила организации и проведения акустико-эмиссионного контроля сосудов, аппаратов и технологических трубопроводов. М.: ПИО ОБТ, 2003. 55 с.
14. Растегаева И. И., Растегаев И. А., Аглетдинов Э. А., Мерсон Д. Л. Сравнение основных частотно-временных преобразований спектрального анализа сигналов акустической эмиссии // Frontier Materials & Technologies. 2022. No. 1. P. 49 ‒ 60.

Eng

1. Goncharov A. L., Marchenkov A. Yu., Terenty ev E. V. et al. (2019). Study of Structural Non-Homogeneity Impact on Mechanical Properties of Dissimilar Weld Joints of Carbon Steel 20 and Corrosion-Resistant Austenitic 12Kh18N10T Steel. IOP Conference Series: Materials Science and Engineering, 681(012016).
2. Barat V. A., Marchenkov A. Yu., Karpova M. V. et al. (2023). Application of acoustic emission method for detecting diffusion interlayers in different welded joints. Kontrol'. Diagnostika, Vol. 26, 304(10), 4 ‒ 10. [in Russian language] DOI: 10.14489/td.2023.10.pp.004-010
3. Rastegaev I. A., Yasnikov I. S., Rastegaeva I. I. et al. (2022). Estimation of the probability of detecting acoustic emission signals using the amplitude discrimination method at a low signal-to-noise ratio. Defektoskopiya, (3), 3 ‒ 12. [in Russian language]
4. Agletdinov E., Pomponi E., Merson D., Vinogradov A. (2016). A Novel Bayesian Approach to Acoustic Emission Data Analysis. Ultrasonics, 72, 89 ‒ 94.
5. Stepanova L. N., Chernova V. V., Ramazanov I. S. (2019). Using clustering methods for processing acousticemission information. Kontrol'. Diagnostika, (8), 12 ‒ 21. [in Russian language] DOI: 10.14489/td.2019.08.pp.012-021
6. Pomponi E., Vinogradov A. (2013). A Real-Time Approach to Acoustic Emission Clustering. Mechanical Systems and Signal Processing, 40(2), 791 ‒ 804.
7. Ren F., Zhu C., Yuan Z. at al. (2023). Recognition of Shear and Tension Signals Based on Acoustic Emission Parameters and Waveform Using Machine Learning Methods. International Journal of Rock Mechanics and Mining Sciences, 171(4).
8. Matvienko Yu. G., Vasil'ev I. E., Chernov D. V. et al. (2022). Increasing the likelihood of identifying sources of acoustic emission using artificial neural networks сетей. Defektoskopiya, (5), 3 ‒ 12. [in Russian language]
9. Kolář P., Petružálek M. (2022). A Two-Step Algorithm for Acoustic Emission Event Discrimination Based on Recurrent Neural Networks. Computers & Geosciences, 163.
10. Hesser D. F., Mostafavi S., Kocur G. K., Markert B. (2021). Identification of Acoustic Emission Sources for Structural Health Monitoring Applications Based on Convolutional Neural Networks and Deep Transfer Learning. Neurocomputing, 453.
11. Sazonov A. A., Shelobkov V. I., Ivanov V. I. (2020). Influence of acoustic-electronic channel on acoustic emission hit parameters. Kontrol'. Diagnostika, (6), 14 ‒ 22. [in Russian language] DOI: 10.14489/td.2020.06.pp.014-022
12. Masayasu Ohtsu (Ed.), Proverbio E., Calabrese L. (2015). Artificial Neural Network Analysis of Acoustic Emission Data During Longtime Corrosion Monitoring of Post-Tensioned Concrete Structures. Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete, 225 ‒ 256. Woodhead Publishing. (Woodhead Publishing Series in Civil and Structural Engineering).
13. Rules for organizing and conducting acoustic emission testing of vessels, apparatus and process pipelines No. PB 03-593‒03. (2003). Moscow: PIO OBT. [in Russian language]
14. Rastegaeva I. I., Rastegaev I. A., Agletdinov E. A., Merson D. L. (2022). Comparison of the main time-frequency transformations of spectral analysis of acoustic emission signals. Frontier Materials & Technologies, (1), 49 ‒ 60. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2024.12.pp.004-013

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.12.pp.004-013

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования