DOI: 10.14489/td.2025.04.pp.062-068
Гущина Е. А. ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ КЛАСТЕРНОГО АНАЛИЗА ДЛЯ ПРОГНОЗИРОВАНИЯ СВОЙСТВ ПОЛИМЕРНЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ (c. 62-68)
Аннотация. Представлено исследование применения кластерного анализа для прогнозирования свойств полимерных композитных материалов (ПКМ). Рассматриваются методы кластеризации, которые позволяют эффективно группировать разнообразные полимерные составы на основе специфических свойств, таких как механическая прочность, теплопроводность, электропроводность и др. Использование кластерного анализа открывает возможности для выявления скрытых закономерностей и взаимосвязей между компонентами композитов, что, в свою очередь, способствует оптимизации их композиции и значительному улучшению эксплуатационных характеристик. В исследовании использовался метод линейной регрессии для прогнозирования свойств ПКМ на основе их состава и технологических параметров. Полученные результаты подчеркивают высокую эффективность кластерного анализа как важного инструмента для оптимизации состава ПКМ и улучшения их эксплуатационных характеристик, что может иметь потенциальное применение в различных отраслях промышленности и науки.
Ключевые слова: кластерные алгоритмы, кластерный анализ, структура базы данных, полимерные композитные материалы, прогнозирование свойств, оптимизация свойств.
Gushina E. A. STUDY OF THE POSSIBILITY OF APPLYING CLUSTER ANALYSIS FOR PREDICTING THE PROPERTIES OF POLYMER COMPOSITE MATERIALS (pp. 62-68)
Abstract. This paper presents a study of the application of cluster analysis for predicting the properties of polymer composite materials. Clustering methods are considered, which allow efficient grouping of a variety of polymer composites based on specific properties such as mechanical strength, thermal conductivity, electrical conductivity and others. The use of cluster analysis opens up opportunities to reveal hidden patterns and relationships between the components of composites, which in turn helps to optimize their compositions and significantly improve their performance characteristics. The study utilized linear regression method to predict the properties of composite materials based on their composition and process parameters. The results obtained highlight the high efficiency of cluster analysis as an important tool for optimizing the composition of polymer composites and improving their performance characteristics, which may have potential applications in various branches of industry and science.
Keywords: cluster algorithms, cluster analysis, database structure, polymer composite materials, prediction of properties, optimization of properties.
Е. А. Гущина (Санкт-Петербургский университет аэрокосмического приборостроения, Санкт-Петербург, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
E. A. Gushina (Saint Petersburg University of Aerospace Instrumentation, Saint Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Гуренко А. В. Полимерные композиционные материалы в аэрокосмической промышленности // Научный аспект. 2024. № 6. С. 687. 2. ГОСТ Р 57921‒2017. Композиты полимерные. Методы испытаний. Общие требования. М.: Стандартинформ, 2017. 42 с. 3. Cheng Z. Q., Liu H., Tan W. Advanced Computational Modelling of Composite Materials // Engineering Fracture Mechanics. 2024. V. 305, No. 2. P. 110120. 4. Rammerstorfer F. G., Dorninger K., Starlinger A., Skrna-Jakl I. C. Computational Methods in Composite Analysis and Design // Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures. Ch. 8. Wien: Springer, 1994. P. 209 ‒ 231. (International Centre for Mechanical Sciences (CISM). V. 348). 5. Morgan D., Jacobs R. Opportunities and Challenges for Machine Learning in Materials Science // Annual Review of Materials Research. 2020. V. 50, No. 1. P. 71 ‒ 103. 6. Mason R. D., Lind D. A. Statistical Techniques in Business and Economics. Irwin/McGraw Hill, 1999. 791 p. 7. Parker A. J., Barnard A. S. Selecting Appropriate Clustering Methods for Materials Science Applications of Machine Learning // Advanced Theory and Simulations. 2019. V. 2, No. 12. P. 1900145. 8. Zhao J., Ramos N. M. M., Simoes M. L., et al. Application of Clustering Technique for Definition of Generic Objects in a Material Database // Journal of Building Physics. 2015. V. 39, No. 2. P. 124 ‒ 146. 9. Jiang Z., Zhang Z., Friedrich K. Prediction on Wear Properties of Polymer Composites with Artificial Neural Networks // Composites Science and Technology. 2007. V. 67, No. 2. P. 168 ‒ 176. 10. Hamidi Y. K., Berrado A., Altan M. C. Machine Learning Applications in Polymer Composites // AIP Conference Proceedings. AIP Publishing. 2020. V. 2205. No. 1. 11. Tao L., Chen G., Li Y. Machine Learning Discovery of High-Temperature Polymers // Patterns. 2021. V. 2, No. 4. P. 100225. 12. Гущина Е. А. Проектирование базы данных полимерных композитных материалов // Вестник Казанского государственного технического университета им. А. Н. Туполева. 2024. № 2. С. 46 ‒ 49. 13. Ayatollahi M. R., Shadlou S., Shokrieh M., Chitsazzadeh M. Effect of Multi-Walled Carbon Nanotube Aspect Ratio on Mechanical and Electrical Properties of Epoxybased Nanocomposites // Polymer Testing. 2011. V. 30, No. 5. P. 548 ‒ 556. 14. Hawkins S. A., Yao H., Wang H., Sue H.-J. Tensile Properties and Electrical Conductivity of Epoxy Composite thin Films Containing Zinc Oxide Quantum Dots and Multi-Walled Carbon Nanotubes // Carbon. 2017. V. 115. P. 18 ‒ 27. 15. Verma P., Saini P., Choudhary V. Designing of Carbon Nanotube/Polymer Composites using Melt Recirculation Approach: Effect of Aspect RAtio on Mechanical, Electrical and EMI Shielding Response // Materials & Design. 2015. V. 88. P. 269 ‒ 277. 16. Селуков Д. А., Шилов В. С. Нахождение оптимального числа кластеров «методом локтя» // Инновационные технологии: теория, инструменты, практика. 2016. Т. 1. С. 107 ‒ 111. 17. Гельман Э., Хилл Дж., Вехтари А. Регрессия: теория и практика. Cambridge: Cambridge University Press, 2022. 748 с.
1. Gurenko A. V. (2024). Polymer composite materials in the aerospace industry. Nauchniy aspekt, (6). [in Russian language] 2. Polymer composites. Test methods. General requirements. (2017). Ru Standard GOST 57921‒2017. Moscow: Standartinform. [in Russian language] 3. Cheng Z. Q., Liu H., Tan W. (2024). Advanced Computational Modelling of Composite Materials. Engineering Fracture Mechanics, 305(2). 4. Rammerstorfer F. G., Dorninger K., Starlinger A., Skrna-Jakl I. C. (1994). Computational Methods in Composite Analysis and Design. Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures. Chapter 8, 209 ‒ 231. Wien: Springer. (International Centre for Mechanical Sciences (CISM). 348). 5. Morgan D., Jacobs R. (2020). Opportunities and Challenges for Machine Learning in Materials Science. Annual Review of Materials Research, 50(1), 71 ‒ 103. 6. Mason R. D., Lind D. A. (1999). Statistical Techniques in Business and Economics. Irwin/McGraw Hill. 7. Parker A. J., Barnard A. S. (2019). Selecting Appropriate Clustering Methods for Materials Science Applications of Machine Learning. Advanced Theory and Simulations, 2(12). 8. Zhao J., Ramos N. M. M., Simoes M. L. et al. (2015). Application of Clustering Technique for Definition of Generic Objects in a Material Databas. Journal of Building Physics, vol. 39, (2), 124 ‒ 146. 9. Jiang Z., Zhang Z., Friedrich K. (2007). Prediction on Wear Properties of Polymer Composites with Artificial Neural Networks. Composites Science and Technology, 67(2), 168 ‒ 176. 10. Hamidi Y. K., Berrado A., Altan M. C. (2020). Machine Learning Applications in Polymer Composites. AIP Conference Proceedings. AIP Publishing, 2205(1). 11. Tao L., Chen G., Li Y. (2021). Machine Learning Discovery of High-Temperature Polymers. Patterns, 2(4). 12. Gushchina E. A. (2024). Design of a database of polymer composite materials. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A. N. Tupoleva, (2), 46 ‒ 49. [in Russian language] 13. Ayatollahi M. R., Shadlou S., Shokrieh M., Chitsazzadeh M. (2011). Effect of Multi-Walled Carbon Nanotube Aspect Ratio on Mechanical and Electrical Properties of Epoxy-based Nanocomposites. Polymer Testing, 30(5), 548 ‒ 556. 14. Hawkins S. A., Yao H., Wang H., Sue H.-J. (2017). Tensile Properties and Electrical Conductivity of Epoxy Composite thin Films Containing Zinc Oxide Quantum Dots and Multi-Walled Carbon Nanotubes. Carbon, 115, 18 ‒ 27. 15. Verma P., Saini P., Choudhary V. (2015). Designing of Carbon Nanotube/Polymer Composites using Melt Recirculation Approach: Effect of Aspect RAtio on Mechancal, Electrical and EMI Shielding Response. Materials & Design, 88, 269 ‒ 277. 16. Selukov D. A., Shilov V. S. (2016). Finding the optimal number of clusters using the elbow method. Innovatsionnye tekhnologii: teoriya, instrumenty, praktika, (1), 107 ‒ 111. [in Russian language] 17. Gel'man E., Hill Dzh., Vekhtari A. (2022). Regression: theory and practice. Cambridge: Cambridge University Press. [in Russian language]
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 700 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2025.04.pp.062-068
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2025.04.pp.062-068
and fill out the form
.
|