DOI: 10.14489/td.2025.05.pp.062-068
Grechishnikov V. M., Teryaeva O. V., Kapiturov A. E. MULTICHANNEL FIBER-OPTIC CONVERTERS FOR MONITORING THRESHOLD VALUES OF PHYSICAL PARAMETERS OF PRODUCTS (pp. 62-68)
Abstract. The article is devoted to the development of multisensor fiber-optic converters for monitoring threshold values of physical parameters of industrial and social objects. The principles of interaction of the sensitive elements of the proposed converters with the objects of control using kinematic, magnetic and thermal effects are formulated. The designs of multisensor converters based on fiber-optic digital-to-analog converters with parallel and serial structural schemes are considered. Mathematical models of converters are proposed and algorithms for digital information processing in the electronic unit of converters are analyzed. A comparative analysis of the proposed converters and their analogs is given according to the criteria of energy efficiency, simplicity and availability of the electronic element base, as well as technical and economic indicators. It has been established that the proposed converters, depending on the type of fiber-optic digital-to-analog converter, provide information capacity at the level of 3…5 bits. The directions of development of the converters of the considered class, associated with the increase in their information capacity, are substantiated.
Keywords: information converter, industrial facility, control, attenuator, fiber optics, information capacity.
V. M. Grechishnikov, O. V. Teryaeva, A. E. Kapiturov (Samara National Research University, Samara, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Zhizhin V. (2010). Fiber optic sensors: prospects for industrial application. Elektronnye komponenty, (12), 17 ‒ 23. [in Russian language] 2. Sidorov A. I. (2019). Sensory photonics. Saint-Petersburg: Universitet ITMO. [in Russian language] 3. Young-Kai Chen, Andreas Leven, Kun-Yii Tu (2006). Optical Digital-to-analog Converter. Patent No. 70614114. USA. 4. Brian L. (2009). Optical Digital to Analog Conversion. Patent No. 7525461. USA. Uhlhorn. 5. Varzhel' S. V. (2016). Fiber Bragg gratings. Saint-Petersburg: Universitet ITMO. Retrieved from https://www.iprbookshop.ru/65830.html>.7 [in Russian language] 6. Grechishnikov V. M., Teryaeva O. V. (2016). Fiber-optical Converter Onboard Sensors Mechanization of Aircraft Mechanization Devices. Russian Aeronautics, 59(3), 426 ‒ 432. 7. Shishkin V. V., Churin A. E., Harenko D. S., Shelemba I. S. (2013). Monitoring system for supporting structures of a football arena based on fiber-optic sensors. FOTON-EKSPRESS, (6), 22 ‒ 23. [in Russian language] 8. Fedotov M. Yu. (2023). Methods for forming spatial topology and interrogating fiber-optic sensors for diagnostics of composite structures. Kontrol'. Diagnostika, 26(4), 24 ‒ 37. [in Russian language]. DOI: 10.14489/td.2023.04.pp.024-037 9. Goossens S., Berghmans F., Munoz K., et al. (2021). A Global Assessment of Barely Visible Impact Damage for CFRP Sub-Components with FBG-based Sensors. Composite Structures, 272, 1 ‒ 12. DOI: 10.1016/j.compstruct.2021.114025 10. Jeon S.-J., Park S. Y., Kim S. T. (2022). Temperature Compensation of Fiber Bragg Grating Sensors in Smart Strand. Sensors, 22(9). DOI: 10.3390/s22093282 11. Fedotov M. Yu. (2023). Theoretical studies of thermal compensation of the results of diagnostics of polymer composites using the two optical fibers method. Defektoskopiya, (10), 53 ‒ 65. [in Russian language] DOI: 10.31857/S0130308223100056 12. Interrogator GC-97001C. Retrieved from https://lenlasers.ru/ [in Russian language] 13. Grechishnikov V. M., Kapiturov A. E., Nersisyan K. B., Teryaeva O. V. (2022). Multisensor fiber-optic converter of binary mechanical signals. Nadezhnost' i kachestvo slozhnyh sistem, (3), 95 ‒ 103. [in Russian language] DOI: 10.21685/2307-4205-2022-3-12 14. Teryaeva O. V. (2017). Multisensory information converters based on fiber-optic DACs. [in Russian language] 15. Grechishnikov V. M., Kapiturov A. E. (2022). Adjustable optical attenuator. Ru Patent No. 2768522. Russian Federation. [in Russian language] 16. Gutnikov V. S. (1988). Integrated electronics in measuring devices. Leningrad: Energoatomizdat. [in Russian language] 17. Tihonov B. N., Hodzhaev I. A. (2017). Metrology and electrical and radio measurements in telecommunication systems: textbook. Moscow: Goryachaya liniya ‒ Telekom. [in Russian language]
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2025.05.pp.062-068
and fill out the form
|