Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная
22 | 11 | 2024
2014, 06 июнь (June)

DOI: 10.14489/td.2014.06.pp.055-060

Бекирова Л.Р.
СРАВНИТЕЛЬНАЯ ИНФОРМАЦИОННАЯ ОЦЕНКА ДИСТАНЦИОННЫХ КОЛОРИМЕТРИЧЕСКИХ СИСТЕМ КОНТРОЛЯ
(с. 55-60)

Аннотация. Предложены классифицированные диаграммы колориметрических систем на базе классификационных признаков мульти-спектральных объектов и колориметрических систем. Получены математические выражения для оценки количества информации на выходе RGB и гиперспектральных колориметров. Получено математическое выражение предпочтительности выбора RGB- колориметрической системы в противовес гиперспектральным системам.

Ключевые слова: колориметрическая система, гиперспектрометр, информационная оценка, энтропия, дистанционное зондирование.

 

Bekirova L.R.
CLASSIFICATION AND COMPARATIVE INFORMATION ASSESSMENT OF REMOTE COLORIMETER SYSTEMS
(pp. 55-60)

Abstract. The classification diagrams of colorimetric systems on the basis of multispectral objects and colorimetric systems classification signs are suggested. It is well known that the main advantage of hyperspectral colorimetric system is a high amount of spectral bands, which in its turn leads to low signal/noise ratio at the output of spectral channels. This property of hyperspectral colorimeters causes the low informative content in some cases. In the paper the comparison of RGB and hyperspectral colorimeters is carried out. The mathematical formulas for estimation of amount of information at the output of RGB and hyperspectral colorimeters are derived. The mathematical condition for preva-lence of choosing RGB colorimetric systems versus hyperspectral one is formulated.

Keywords: colorimetric system, hyperspectrometer, information estimate, entropy, remote sensing.

Рус

Л. Р. Бекирова (Азербайджанская государственная нефтяная академия, Баку) E-mail: asadzade@rambler 

Eng

L. R. Bekirova (Azerbaijan State Oil Academy, Baku) E-mail: asadzade@rambler 

Рус

1. Kaeakami R., Wright J., Tai Y.-W. et al. High-resolution Huperspectral Imaging via Matrix Factorization // Com-puter Vision and Pattern Recognition (CVPR). Conference on 20 – 25 June 2011. IEEE. 2011. P. 2329 – 2336. (Conference Publica-tions, Univ. of Tokyo, Tokyo, Japan).
2. Wang B., Wang X., Chen Z. Spatial Entropy Based Mu-tual Information in Hyperspectral Band Selection for Supervised // International Journal of Numerical Analysis and Modeling. 2012. V. 9. N 2. P. 181 – 192.
3. Moan S. L., Mansouri A., Hardeberg J. Y., Voisin Y. Saliency in Spectral Images // Dimensionality Reduction and Saliency for Spectral Image Visualization. École doctorale SPIM / Université de Bourgogne/UFR ST BP 47870 F – 21078. Dijon, 2012. Р. 79 – 100.
4. Collin A., Planes S. Enhancing Coral Health Detection Using Spectral Diversity Indices from World View-2 Imagery and Machine Learners // Remote Sen. 2012. N 4. Р. 3244 – 3264; doi:10.3390/rs4103244.
5. Moan S. L., Mansouri A., Hardeberg J. Y., Voisin Y. Saliency-based Band Selection for Spectral Image Visual-ization / 19th Color and Imaging Conference Final Program and Proceedings. 2011. Р. 363 – 368.
6. Wang H., Angelopoulou E. Sensor Band Selection for Multispectral Imaging via Average Normalized Information, Pro-ceedings of 3rd International Workshop on Spectral Imaging, in conjunction with ECCV. 2006. Р. 114 – 123.
7. Demir B., Celebi A. A Low-complexity Approach for Color Display of Hyperspectral Remote-sensing Images Using one-bit Transform Based Band Selection // Geoscience and Remote Sensing. IEEE Transactions. 2009. V. 47. N 1. Р. 97 – 105.
8. Flierl M., Girod B. Multihypothesis Motion Estimation for Video Coding. URL: аphrodite.s3.kth.se/mflierl/publications/flierl:01-DCC.pdf
9. Дерюгин Н. Н. Спектр мощности и функция корреля-ции телевизионного сигнала // Электросвязь. 1957. № 7. С. 41 – 49.
10. Цифровое кодирование телевизионных изображений / ред. И. И. Цуккерман. М.: Радио и связь, 1981. 240 с.
11. Темников Ф. Е., Афонин В. А., Дмитриев В. И. Тео-ретические основы информационной техники. М.: Энергия, 1971. 424 с.

Eng

1. Kaeakami R., Wright J., Tai Y.-W. et al. (2011). High-resolution Huperspectral Imaging via Matrix Factorization. Com-puter Vision and Pattern Recognition (CVPR). Conference on 20 – 25 June 2011. IEEE 2011, pp. 2329 – 2336. (Conference Publica-tions, Univ. of Tokyo, Tokyo, Japan).
2. Wang B., Wang X., Chen Z. (2012). Spatial entropy based mutual information in hyperspectral band selection for supervised. International Journal of Numerical Analysis and Modeling, 9(2), pp. 181-192.
3. Moan S. L., Mansouri A., Hardeberg J. Y., Voisin Y. (2012). Saliency in Spectral Images. Dimensionality Reduction and Saliency for Spectral Image Visualization. École doctorale SPIM. Université de Bourgogne/UFR ST BP 47870 F – 21078. Dijon, pp. 79 – 100.
4. Collin A., Planes S. (2012). Enhancing coral health detec-tion using spectral diversity indices from world View-2 imagery and machine learners. Remote Sen., (4), pp. 3244-3264. doi:10.3390/rs4103244.
5. Moan S. L., Mansouri A., Hardeberg J. Y., Voisin Y. (2011). Saliency-based Band Selection for Spectral Image Visual-ization. 19th Color and Imaging Conference Final Program and Pro-ceedings, pp. 363 – 368.
6. Wang H., Angelopoulou E. (2006). Sensor Band Selection for Multispectral Imaging via Average Normalized Information. Proceedings of 3rd International Workshop on Spectral Imaging, in conjunction with ECCV, pp. 114 – 123.
7. Demir B., Celebi A. A (2009). A low-complexity approach for color display of hyperspectral remote-sensing images using one-bit transform based band selection. Geoscience and Remote Sensing. IEEE Transactions, 47(1), pp. 97-105.
8. Flierl M., Girod B. Multihypothesis Motion Estimation for Video Coding. Available at: http://аphrodite.s3.kth.se/mflierl/publications/flierl:01-DCC.pdf
9. Deriugin N. N. (1957). The power spectrum and the corre-lation function of a television signal. Elektrosviaz', (7), pp. 41-49.
10. Tsukkerman I. I. (1981). Digital encoding of TV images. Moscow: Radio i sviaz'.
11. Temnikov F. E., Afonin V. A., Dmitriev V. I. (1971). Theoretical bases of informative technique. Moscow: Energiia..

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 250 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа статьи заполните форму:

Форма заказа статьи



Дополнительно для юридических лиц:


Type the characters you see in the picture below



.

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 250 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please fill out the form below:

Purchase digital version of a single article


Type the characters you see in the picture below



 

 

 

 

 

.

.

 

 
Rambler's Top100 Яндекс цитирования