Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
26 | 04 | 2024
2019, 04 April

DOI: 10.14489/td.2019.04.pp.036-044

 

Lozhkova D. S., Krasnov I. S., Dalin M. A.
ULTRASONIC IMMERSION TESTING OF BARS WITH CURVILINEAR SURFACE АFTER EQUIPMENT CALIBRATION ON THE FLAT SPECIMENS
(pp. 36-44)

Abstract. The increasing requirements of design engineers to nondestructive testing sensitivity and completeness of finished part contour in the forging provide the need of ultrasonic immersion testing from its cylindrical surfaces. The presented work was directed at the determination of correction coefficients which equalize the ultrasonic testing sensitivity for objects with curvilinear surface after ultrasonic equipment calibration on the specimens with flat surface. The correction coefficients were found with mathematical modeling using. Simulated echo waveform with mathematical modeling using was calculated at frequency domain. Electric path’s parameters of equipment which is used during serial testing and acoustic properties of the substance were also considered. Longitudinal oscillations were observed at this work. Experimental validation of mathematical modeling data using real specimens with different internal reflectors was made. Nickel based superalloy and aluminum alloy specimens with curvilinear surfaces were used. Flat bottom hole reflectors’ diameters were varied from 2,0 to 3,2 mm, their depths were varied from 5,0 to 50,0 mm. Focused transducers with 5 and 10 MHz central frequencies were used at experiment. The error of mathematical modeling was defined. The correction coefficients leveling sensitivity for depth increasing were calculated. Main directions of mathematical model’s improvement were defined.

Keywords: automated ultrasonic testing, mathematical modeling of physical processes, correction coefficients, focused transducers, engine’s critical parts, nickel based super alloy.

 

 D. S. Lozhkova, I. S. Krasnov, M. A. Dalin (Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

 

1. Kablov E. N. (2015). Innovative development of FSUE "VIAM" SSC RF on the implementation of the "Strategic directions of development of materials and technologies for their processing for the period until 2030". Aviatsionnye materialy i tekhnologii, 34(1), pp. 3-33. [in Russian language] DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Razuvaev E. I., Bubnov M. V., Bakradze M. M., Sidorov S. A. (2016). HIP and deformation of granular heat resistant nickel alloys. Aviatsionnye materialy i tekhnologii, (S1), pp. 80-86. [in Russian language] DOI: 10.18577/2071-9140-2016-0-S1-80-86.
3. Lomberg B. S., Ovsepyan S. V., Bakradze M. M. et al. (2017). The use of new wrought nickel alloys for promising gas turbine engines. Aviatsionnye materialy i tekhnologii, (S), pp. 116-129. [in Russian language] DOI: 10.18577/ 2071-9140-2017-0-S-116-129.
4. Kablov E. N. (2016). New generation materials - the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 14(2), pp. 16-21. [in Russian language]
5. Lomberg B. S., Ovsepyan S. V., Bakradze M. M., Mazalov I. S. (2011). High-strength wrought nickel alloys for promising gas turbine engines and gas turbines. Vestnik MGTU im. N. E. Baumana. Perspektivnye konstruktsionnye materialy i tekhnologii: spetsvypusk, pp. 98-103. [in Russian language]
6. Lomberg B. S., Ovsepyan S. V., Bakradze M. M., Mazalov I. S. (2012). High-temperature heatresistant nickel alloys for parts of gasturbine engines. Aviatsionnye materialy i tekhnologii, (S), pp. 52-57. [in Russian language]
7. Gas turbine aircraft engines. Non-destructive testing of basic parts. (2012). Industry Standard No. OST 1 01207–2012. Moscow. [in Russian language]
8. Kablov E. N., Ospennikova O. G., Lomberg B. S. (2012). Creation of modern heat-resistant materials and their production technologies for aircraft engine-building. Kryl'ya Rodiny, (3–4), pp. 34-38. [in Russian language]
9. Kablov E. N., Ospennikova O. G., Bazyleva O. A. (2011). Materials for high heat-loaded parts of gas turbine engines. Vestnik MGTU im. N. E. Baumana. Seriya Mashinostroenie, (SP2), pp. 13-19. [in Russian language]
10. Kablov E. N. (2001). Quality control of materials is a guarantee of the safety of aircraft operation. Aviatsionnye materialy i tekhnologii, (1), pp. 3-8. [in Russian language]
11. Dalin M. A., Generalov A. S., Boychuk A. S., Lozhkova D. S. (2013). The main trends in the development of acoustic methods of non-destructive testing. Aviatsionnye materialy i tekhnologii, (1), pp. 64-68. [in Russian language]
12. Rodionov S. A. (2000). Lectures on the course "Fundamentals of Optics". Saint Petersburg: FGBOU VPO «SPbNIU ITMO». [in Russian language]
13. Lozhkova D. S., Dalin M. A., Tsykunov N. V. (2014). Evaluation of the reliability of automated ultrasonic testing of titanium alloys. Kontrol'. Diagnostika, (6), pp. 24-28. [in Russian language] DOI: 10.14489/td.2014.06.pp.024-028.
14. Lozhkova D. S. (2017). Assessment of the reliability of automated ultrasonic testing of semifinished products of the main parts of the GTE of titanium alloy using mathematical modeling. Kontrol'. Diagnostika, (12), pp. 54-63. [in Russian language] DOI: 10.14489/td. 2017.12.pp.054-063.
15. Lozhkova D. S., Dalin M. A. (2018). Simulation of the processes of refraction and subsequent propagation of broad-band pulses of spherically focused ultrasonic waves when they fall from a liquid onto the flat surfaces of a solid at different angles. The main trends, directions and prospects for the development of non-destructive testing methods in the aerospace industry: a collection of proceedings of the X All-Russian Conference, pp. 167-187. Moscow: VIAM. [in Russian language]
16. Lozhkova D. S. (2017). Assessment of the reliability of automated ultrasonic testing of semifinished products of the main parts of the GTE of titanium alloy. Klimov readings - 2017. Perspective directions for the development of aircraft engine-building: a collection of articles of scientific and technical conference, pp. 130 – 139. Saint Petersburg: AO «ODK-Klimov». [in Russian language]

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2019.04.pp.036-044

and fill out the  form  

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования