Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
26 | 04 | 2024
2019, 07 July

DOI: 10.14489/td.2019.07.pp.024-029

 

Fedotov M. Yu., Budadin O. N., Kozel’skaya S. O.
TECHNOLOGICAL ASPECTS OF CREATING A FIBER-OPTIC NON-DESTRUCTIVE TESTING OF SANDWICH COMPOSITE STRUCTURES
(pp. 24-29)

Abstract. The results of research on the formation of the system of built-in non-destructive testing of linings of composite three-layer structures by an optical method using fiber-optic sensors based on fiber Bragg gratings are presented. The features of creating an input/output zone for fiber-optic sensors as applied to three-layer composite structures are studied. Recommendations for ensuring the integrity and optimal functioning of the fiber-optic monitoring system as applied to a real three-layer composite structure are formulated. The following is shown. The process of creating an integrated control system of three-layer composite structures by an optical method using integrated fiber-optic sensors includes a number of operations to form a topology and to ensure the output of fiber-optic sensors from composite claddings in a single technological cycle of manufacturing the structure according to the standard technological process without significantly adjusting it, which is extremely important in relation to serial technologies. When developing the technology of integrating fiber-optic sensors into a three-layer composite structure, it was experimentally shown that from the point of view of survivability and preservation of the efficiency of the embedded control system, it is necessary to fulfill a number of requirements for the placement and output of fiber-optic sensors taking into account the characteristics of manufacturing, machining, and operation designs. Thus, it is advisable to place fiber optic sensors in the casings at least 5 mm from the intended edge of the structure, at least 2 layers from the outer surface of the structure and not less than 5 layers from the honeycomb core. The fiber bend radius should be at least 30 mm to prevent mechanical burst and sharp bending of the signal when it is bending. Fiber optic sensors are recommended to be placed between layers with a reinforcement scheme in the direction of the fiber optic sensor, however placement is also allowed between the fiber sensors and one layer with a different direction of reinforcement, while in order to prevent fractures, computation fiber optic sensors overlap is unacceptable, thus, between crossover fiber-optic sensors must be at least 2 layers of prepreg.

Keywords: sandwich composite structure, optical method of non-destructive testing, fiber-optic monitoring system, fiber-optic sensor, fiber Bragg grating, sensor topology, input/output zone.

 

М. Yu. Fedotov (Closed Joint-Stock Company “Research Institute of Introscopy of MSIA “Spectrum” (JSC “Spectrum-RII”), Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. N. Budadin, S. О. Kozel’skaya (Joint Stock Company “CENTRAL RESEARCH INSTITUTE FOR SPECIAL MACHINERY”, Khotkovo, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

 

1. Basharov, E. A., Vagin A. Yu. (2017). Analysis of the use of composite materials in the design of helicopter gliders. Trudy MAI, 92. Available at: http://trudymai.ru/upload/iblock/3a2/basharov_vagin_rus.pdf (Accessed: 22.12.2018). [in Russian language]
2. Vagin, A. Yu., Schetinin Yu. S. (2009). The use of polymer composite materials in the construction of helicopters firm "Kamov". Collection of theses of reports of the interbranch conference "Composite materials in aerospace materials science". Moscow: VIAM. [in Russian language]
3. Fedotov M. Yu., Goncharov V. A., Mahsidov V. V. et al. (2015). Sensors for information composites. Materialovedenie, (1), pp. 26 – 33. [in Russian language]
4. Fedotov M. Yu. (2018). Improving the technology of optical control of PCM structures using fiber-optic sensors. Collection of theses of reports of the I All-Russian Conference on Intelligent Sensors and Systems "IntelliUm-2018". Saint Petersburg. [in Russian language]
5. Mahsidov V. V., Reznikov V. A., Shienok A. M. et al. (2015). Detection of material defects using fiber Bragg gratings integrated into its structure (review). Kontrol'. Diagnostika, (10), pp. 17 – 21. [in Russian language] DOI: 10.14489/td.2015.010.pp.017-021
6. Reznikov V. A., Mahsidov V. V., Gulyaev I. N. (2015). The current state of methods for determining material deformation using fiber Bragg gratings integrated into its structure. Kontrol'. Diagnostika, (11), pp. 49 – 56. [in Russian language] DOI: 10.14489/td.2015.011.pp.049-056
7. Vasil'ev S. A., Medvedkov O. I., Korolev I. G. et al. (2004). Photoinduced refractive index gratings and their applications. Foton-Ekspress-Nauka, (6), pp. 163 – 183. [in Russian language]
8. Fedotov M. Yu., Budadin O. N., Vasil'ev S. A. et al. (2019). Research of the built-in fiber-optical system for diagnostics of carbon fiber after the impact of technological molding regimes. Kontrol'. Diagnostika, (1), pp. 42 – 49. [in Russian language] DOI: 10.14489/td.2019.01.pp.042-049
9. Fedotov M. Yu., Budadin O. N., Vasil'ev S. A. et al. (2018). Study of an integrated fiber-optic system for diagnosing carbon fiber after exposure to thermal and heat-moisture aging. Kontrol'. Diagnostika, (11), pp. 26 – 30. [in Russian language] DOI: 10.14489/td.2018.11.pp.026-031
10. Larin A. A., Fedotov M. Yu., Buharov S. V. et al. (2017). New applications of fiber optic sensor systems. Prikladnaya fotonika, (4), pp. 310 – 324. [in Russian language]
11. D'yakonov A. V., Shelestov D. A., Artem'ev B. V. (2018). Highspeed monitoring of extended objects using fiber-optic sensor systems based on Bragg gratings. Kontrol'. Diagnostika, (3), pp. 40 – 43. [in Russian language] DOI: 10.14489/td.2018.03.pp.040-043
12. Budadin O. N., Kutyurin V. Yu., Muhanova T. A. et al. (2018). Measurement of deformations in high pressure composite cylinders using Bragg fiber optic arrays. Kontrol'. Diagnostika, (6), pp. 34 – 39. [in Russian language]
13. Aniskovich V. A., Budadin O. N., Zaikina N. L. et al. (2018). Measurement of deformations using fiber-optic sensors in the process of strength testing of anisogride structures made of composite materials. Kontrol'. Diagnostika, (7), pp. 44 – 49. [in Russian language] DOI: 10.14489/td.2018.07.pp.044-049
14. Ser'eznov A. N., Kuznetsov A. B., Luk'yanov A. V. et al. (2016). The use of fiber-optic technologies when creating embedded self-diagnosis systems for aircraft structures. Nauchniy vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta, 64(3), pp. 95 – 105. [in Russian language]
15. Svirskiy Yu. A., Trunin Yu. P., Pankov A. V. et al. (2017). Onboard monitoring systems (BSM) and the prospects for the use of fiber-optic sensors in them. Kompozity i nanostruktury, Vol. 9, 33(1), pp. 35 – 44. [in Russian language]
16. Dostovalov A. V., Vol'f A. A., Babin S. A. (2014). Pointwise FBI recording of the first and second order through a polyimide coating with femtosecond radiation with a wavelength of 1026 nm. Prikladnaya fotonika, (2), pp. 48 – 61. [in Russian language]
17. Dostovalov A. V., Vol'f A. A., Babin S. A. (2015). Recording of long-period fiber arrays limited by a slit femtosecond radiation beam (λ = 1026 nm). Kvantovaya elektronika, Vol. 45, (3), pp. 235 – 239. [in Russian language]
18. Fedotov M. Yu., Shiyonok A. M., Mukhametov R. R. et al. (2018). Research of interface of the polymer matrix with optical fibers in smart materials. Inorganic Materials; Applied Research, Vol. 9, (6), pp. 1084 – 1092.
19. Fedotov M. Yu., Buharov S. V., Muhametov R. R. (2017). The study of protective coatings of fiber-optic sensors designed for integration into polymer composite materials. Konstruktsii iz kompozitsionnyh materialov, 148(4), pp. 61 – 67. [in Russian language]
20. Muhametov R. R., Ahmadieva K. R., Deev I. S. et al. (2016). Protective coating for fiber optic sensors. Uprochnyayuschie tekhnologii i pokrytiya, 141(9), pp. 29 – 34. [in Russian language]
21. L'vov N. L., Habarov S. S. (2018). The output device of the fiber-optic sensor from the composite. Ru Patent No. 179119. Russian Federation. [in Russian language]
22. Fedotov M. Yu., Budadin O. N., Vasil'ev S. A. et al. (2019). The impact of the integration of fiber-optic sensors on the mechanical properties of polymer composite materials. Kontrol'. Diagnostika, (2), pp. 22 – 31. [in Russian language] DOI: 10.14489/td.2019.02.pp.022-030
23. Fedotov M. Yu., Beylina N. YU., Gareev A. R. et al. (2017). Features of the integration of fiber-optic sensors in three-layer composite parts. Collection of abstracts of the International Conference of young scientists working in the field of carbon materials, pp. 143–144. Moscow. [in Russian language]

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2019.07.pp.024-029

and fill out the  form  

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования