DOI: 10.14489/td.2022.01.pp.038-044
Balabanov P. V., Divin A. G., Egorov A. S., Zhirkova A. A. THE SYSTEM OF OPTICAL-ELECTRONIC SORTING OF APPLES ON THE CONVEYOR (pp. 38-44)
Abstract. The system of optical-electronic quality control of apples is described. An algorithm for detecting apple defects is proposed. It provides for obtaining information from a linear photodetector of a hyperspectral camera about the intensity of reflected light in the range of 400...1000 nm in 2.5 nm increments and subsequent processing of the obtained spectra, including the calculation of five vegetation indices. They are used as input parameters of a neural network designed to classify apple plant tissues by types of defects. The results of testing the system showed an accuracy of detecting defects of at least 87 %.
Keywords: hyperspectral control, fruit defects, objects of plant origin, robotic complex, sorting, safety of products, technical vision system, spectroscopy.
P. V. Balabanov, A. G. Divin, A. S. Egorov, A. A. Zhirkova (Tambov State Technical University, Tambov, Russia) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Moallem P., Serajoddin A., Pourghassem H. (2017). Computer Vision-Based Apple Grading for Golden Delicious Apples Based on Surface Features. Information Processing in Agriculture, Vol. 4, (1), pp. 33 – 40. DOI: 10.1016/j.inpa.2016.10.003 2. Solovchenko A., Dorokhov A., Shurygin B. et al. (2021). Linking Tissue Damage to Hyperspectral Reflectance for Non-Invasive Monitoring of Apple Fruit in Orchards. Plants, Vol. 10, (2), pp. 310 – 325. DOI: 10.3390/plants10020310 3. Vincent J., Wang H., Nibouche O., Maguire P. (2018). Differentiation of Apple Varieties and Investigation of Organic Status Using Portable Visible Range Reflectance Spectroscopy. Sensors, Vol. 18, (6), pp. 1708 – 1721. DOI: 10.3390/s18061708 4. Yu Y., Velastin S. A., Yin F. (2020). Automatic Grading of Apples Based on Multi-Features and Weighted K-Means Clustering Algorithm. Information Processing in Agriculture, Vol. 7, (4), pp. 555 – 565. DOI: 10.1016/ j.inpa.2019.11.003 5. Kondo N. (2003). Fruit Grading Robot. IEEE / ASME International Conference on Advanced Intelligent Mechatronics, AIM, Vol. 2, pp. 1366 – 1371. DOI: 10.1109/AIM.2003.1225542 6. Jia W., Zhang Y., Lian J. et al. (2020). Apple Harvesting Robot under Information Technology. International Journal of Advanced Robotics Systems, Vol. 17, (3), pp. 1 – 16. DOI: 10.1177/1729881420925310 7. Mohammadi Baneh N., Navid H., Kafashan J. (2018). Mechatronic Components in Apple Sorting Machines with Computer Vision. Journal of Food Measurement and Characterization, Vol. 12, (2), pp. 1135 – 1155. DOI: 10.1007/s11694-018-9728-1 8. Baek I., Cho B.-K., Gadsden S. A., Eggleton Ch. (2019). A Novel Hyperspectral Line-Scan Imaging Method for Whole Surfaces of Round Shaped Agricultural Products. Biosystems Engineering, Vol. 188, (1), pp. 57 – 66. DOI: 10.1016/j.biosystemseng.2019.09.014 9. Wang S. M., Zhang A., Hu Sh.-X., Wang J.-M. (2015). The Linear Hyperspectral Camera Rotating Scan Imaging Geometric Correction Based on the Precise Spectral Sampling. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, Vol. 35, (2), pp. 557 – 562. DOI: 10.3964/j.issn.1000-0593(2015)02-0557-06 10. Oliveira R. A., Tommaselli A. M. G., Honkavaara E. (2019). Generating a Hyperspectral Digital Surface Model Using a Hyperspectral 2D Frame Camera. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 147, pp. 345 – 360. DOI: 10.1016/j.isprsjprs.2018.11.025 11. Balabanov P. V., Divin A. G., Belyaev P. S. et al. (2020). Technical Vision System for Quality Control of Objects of the Ball-Shaped Form when Sorting on the Conveyor. Journal of Physics: Conference Series, Vol. 1546, (1). IV International Scientific and Technical Conference “Mechanical Science and Technology Update”. Omsk: MSTU. DOI: 10.1088/1742-6596/1546/1/012001. 12. Haykin S. (1999). Neural Networks: a Comprehensive Foundation by Simon Haykin. The Knowledge Engineering Review, Vol. 13, (4). 13. Huang R., Zhou L. (2009). Hyperspectral Feature Selection and Classification with a RBF-based Novel Double Parallel Feedforward Neural Network and Evolution Algorithms. 4th IEEE Conference on Industrial Electronics and Applications. Xi'an. DOI: 10.1109/ICIEA.2009.5138290 14. Blank V. A., Podlipnov V. V., Skidanov R. V. (2018). A Dual-Range Diffraction Grating for Imaging Hyperspectrometer Based on the Offner Scheme. Journal of Physics: Conference Series, Vol. 1096, (1), pp. 1 – 4. DOI: 10.1088/1742-6596/1096/1/012131
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2022.01.pp.038-044
and fill out the form
|