Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
22 | 12 | 2024
2022, 05 май (May)

DOI: 10.14489/td.2022.05.pp.012-025

Бадалян В. Г., Вопилкин А. Х.
ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ В УЛЬТРАЗВУКОВОМ НЕРАЗРУШАЮЩЕМ КОНТРОЛЕ (ОБЗОР)
(с. 12-25)

Аннотация. Представлен обзор современного состояния и опыта практического применения искусственных нейронных сетей (ИНС) в ультразвуковом неразрушающем контроле (УЗК). Отдельно рассматриваются особенности использования ИНС для классификации дефектов по данным, полученным эхо-импульсными методами и дифракционно-временным методом. Приводятся сведения об эффективности классификации дефектов с применением ИНС для различных задач УЗК.

Ключевые слова:  ультразвуковой неразрушающий контроль, нейронные сети, классификация дефектов, дифракционно-временной метод.

 

Badalyan V. G., Vopilkin A. Kh.
APPLICATION OF NEURAL NETWORKS IN ULTRASONIC NON-DESTRUCTIVE TESTING (REVIEW)
(pp. 12-25)

Abstract. A review of the current state and experience of the practical application of artificial neural networks in ultrasonic non-destructive testing is presented. Separately, the features of the use of neural networks for the classification of defects according to data obtained by echo-pulse methods and the TOFD are considered. Information is given on the efficiency of defect classification using neural networks for various ultrasonic testing tasks.

Keywords: ultrasonic non-destructive testing, neural networks, defect classification, TOFD.

Рус

В. Г. Бадалян, А. Х. Вопилкин (ООО «Научно-производственный центр «ЭХО+», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

V. G. Badalyan, A. Kh. Vopilkin (Co Ltd “Scientific Production Center of Nondestructive Ultrasonic Testing “ECHO+”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Приборы для неразрушающего контроля материалов и изделий: справочник: в 2 кн. Кн. 1 / под ред. В. В. Клюева. 2-е изд., перераб. и доп. М.: Машиностроение, 1986. 488 с.
2. Барский А. Б. Нейронные сети: распознавание, управление, принятие решений. М.: Финансы и статистика, 2004. 176 с.
3. Назаренко С. Ю., Удод В. А. Применение искусственных нейронных сетей в радиационном неразрушающем контроле // Дефектоскопия. 2019. № 6. С. 53 – 64.
4. Лунин В. П., Жданов А. Г., Лазуткин Д. Ю. Нейросетевой классификатор дефектов для многочастотного вихретокового контроля теплообменных труб // Дефектоскопия. 2007. № 3. С. 37 – 45.
5. Кузьмин Е. В., Горбунов О. Е., Плотников П. О. и др. Применение нейронных сетей для распознавания конструктивных элементов рельсов на магнитных и вихретоковых дефектограммах // Моделирование и анализ информационных систем. 2018. Т. 25, № 6. С. 667 – 679.
6. Вавилов В. П., Нестерук Д. А. Активный тепловой контроль композиционных материалов с использованием нейронных сетей // Дефектоскопия. 2011. № 10. С. 10 – 18.
7. Schromm T., Holtmann J., Koch M., Große C. Automated detection of micrometer-cracks and delamination in CT volumes of previously stressed CFRP pressure rods // 10th Conference on Industrial Computed Tomography (iCT 2020). URL: www.ict-conference.com/2020
8. Hill E., Dion S., Karl J. et al. Neural Network Burst Pressure Prediction in Composite Overwrapped Pressure Vessels // J. Acoustic Emission. 2007. No. 25. P. 187 – 193.
9. Хайкин С. Нейтронные сети. Полный курс. М. – СПб. – Киев, 2006. 1104 с.
10. Va V., Ramyaa R., Srinivasa P. V., Samsingha R. V. A review of implementation of Artificial Intelligence systems for weld defect classification // Materials Today: Proceedings. 2019. No. 16. P. 579 – 583.
11. Cormerais R., Duclos A., Wasselynck G. et al. A Data Fusion Method for Non-Destructive Testing by Means of Artificial Neural Networks // Sensors (Basel). 2021. V. 21, No. 8. P. 2598. DOI 10.3390/s21082598.
12. Margrave F. W., Rigas K., Bradley D. A., Barrowcliffe P. The use of neural networks in ultrasonic flaw detection // Measurement. 1999. V. 25. P. 143 – 154.
13. Masnata A., Sunseri M. Neural network classification of flaws detected by ultrasonic means // NDT & E. International. 1996. V. 29, Is. 2. P. 87 – 93.
14. Sambath S., Nagaraj P., Selvakumar N. Automatic Defect Classification in Ultrasonic NDT Using Artificial Intelligence // J. Nondestruct. Eval. 2011. V. 30. P. 20 – 28. DOI 10.1007/s10921-010-0086-0.
15. Liu Zhenqing. Flaw echo Location based on the Wavelet transform and Artificial Neural Network // 15th World Conference on NDT – 2000, Rome. 15 – 21 Oct. Rome, 2000.
16. Xiaoxia Yang, Shili Chen, Shijiu Jin, Wenshuang Chang. Crack Orientation and Depth Estimation in a Low-Pressure Turbine Disc Using a Phased Array Ultrasonic Transducer and an Artificial Neural Network // Sensors. 2013. V. 13. P. 12375 – 12391. DOI 10.3390/s130912375.
17. Dun Y., Chen J. H., Wang G. L. et al. Identification of Multilayered Structure Properties Using Wavelet-Fractal Dimension of Ultrasonic Data // Proceedings of 2009 IEEE International Conference on Information and Automation, ICIA 2009, 22 – 25 Jun. 2009, Zhuhai/Macau, China. Macau, 2009. P. 990 – 994.
18. Бархатов В. А. Распознавание дефектов с помощью искусственной нейронной сети специального типа // Дефектоскопия. 2006. № 2. С. 28 – 39.
19. Egmont-Petersen M., de Ridder D., Handels H. Image processing with neural networks: a review: Preprint, to appear in Pattern Recognition, 2001.
20. Neural Network and Semi-Automatic Scanners for NDE Applications / EPRI NDE Center, 1996. TR-107119.
21. Spanner J., Udpa L., Polikar R., Ramuhalli P. Neural networks for ultrasonic detection of intergranular stress corrosion cracking // NDT.net 2000-07.
22. Bisiaux B., Deneuville F. On Line Analysis and Interpretation of Ultrasonic Images to Improve the Selectivity of the Control Installations for Steel Pipes // 5th Pan American Conf. for NDT, 2 – 6 Okt. 2011, Cancun, Mexiko. Cancun, 2011. URL: NDT.net: 2011 – 12
23. Fouquet C., Histace A., Duvaut P. Automated Classification of Defect Signatures in Pipelines using Ultrasonic Images // 11th European Conference on Non-Destructive Testing (ECNDT 2014), 6 – 10 Oct. 2014. Prague, Czech. Republic. Prague, 2014.
24. Meng M., Chua Y. J., Ong C. P. K. Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks // Neurocomputing. 2017. V. 257. P. 128 – 135.
25. Munir N., Kim H. J., Park J., et al. Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions // Ultrasonics. 2019. V. 94. P. 74 – 81. DOI 10.1016/J.ultras.2018.12.001.
26. Ye J., Toyama N. Benchmarking deep learning models for automatic ultrasonic imaging inspection // IEEE Acess. 2021. V. 9. P. 36986 – 36994.
27. Virkkunen I., Koskinen T. Flaw Detection in Ultrasonic Data Using Deep Learning // Baltica XI: International Conference on Life Management and Maintenance for Power Plants / VTT Technical Research Centre of Finland. Espoo, 2019.
28. Koskinen T., Virkkunen I., Siljama O., Jessen-Juhler O. The effect of different flaw data to machine learning powered ultrasonic inspection // Journal of Nondestructive Evaluation. 2021. V. 40. No. 1. URL: https://doi.org/10.1007/s10921-021-00757-x
29. Lawson S. W., Parker G. A. Automatic detection of defects in industrial ultrasound images using a neural network // Proceedings of SPIE. 1996. V. 2786. P. 37 – 47.
30. Lawson S. Recent developments for automatic online TOFD inspection // NDT.net: 1997-09.
31. Lalithakumari S., Sheelarani B., Venkatraman B. Classification of TOFD Signals by Artificial Neural Network // 18th World Conference on Nondestructive Testing, 16 – 20 April 2012, Durban, South Africa WCNDT 2012. Durban, 2012. URL: wcndt2012/index.htm
32. Kumari S. L., Rani B. Sh., Venkatraman B. Wavelet Transform based Denoising of ToFD signals of austenitic stainless steel welds // CiiT Int. Journal of Digital Signal Processing. 2011. No. 10.
33. Cenate C. F. Th., Rani B. Sh., Venkatraman B., Sangeetha D. N. Classification of Defects in Time of Flight Diffraction (TOFD) Images Using Artificial Neural Network // NDT.net: 2014-02, APCNDT 2013.
34. Cuenca J. F., Iske A. Persistent Homology for Defect Detection in Non-Destructive Evaluation of Materials // NDT.net: 2016-01.
35. Veiga J. L. B. C., de Carvalho A. A., da Silva I. C., Rebello J. M. A. The Use of Artificial Neural Network in the Classification of Pulse-Echo and TOFD UltraSonic Signals // J. of the Braz. Soc. of Mech. Sci. & Eng. 2005. V. XXVII, No. 4. P. 395 – 398.
36. De Moura E. P., da Silva R R., de Carvalho A. A., et al. Welding defects pattern recognition in TOFD signals using linear classifier implemented by neural networks // Proc. 3th PanAmerican Conf. for Non-Destructive Testing, Rio de Janeiro, 2003. PANNDT. 2003. No. 6.
37. C’Shekhar N. Shitole, O. Zahran, W. Al-Nuaimy. Combining fuzzy logic and neural networks in classification of weld defects using ultrasonic time-of-flight diffraction // Insight. 2007. V. 49, No. 2. P. 79 – 82.
38. C’Shekhar N. Shitole, O. Zahran, Al-Nuaimy W. Advanced Neural-Fuzzy and Image Processing Techniques in The Automatic Detection and Interpretation of Weld Defects Using Ultrasonic Time-of-Diffraction // The 4th International Conference on Non-Destructive Testing (ICNDT2006), 11 – 14 Oct. 2007, Chania Crete, Greece. Chania, 2007.
39. Круглов В. В., Дли М. И., Голунов Р. Ю. Нечеткая логика и искусственные нейронные сети. М.: Физматлит, 2001. 224 с.
40. Ravanbod H. Application of neuro-fuzzy techniques in oil pipeline ultrasonic nondestructive testing // NDT&E International. 2005. V. 38. P. 643 – 653.
41. Sikora R., Baniukiewicz P., Chady T., et al. Artificial Neural Networks and Fuzzy Logic in Nondestructive Evaluation // 18th World Conference on Nondestructive Testing (WCNDT 2012), 16 – 20 Apr. 2012, Durban, South Africa. Durban, 2012.

Eng

1. Klyuev V. V. (Ed.) (1986). Devices for non-destructive testing of materials and products: reference book: in 2 books. Book 1. 2nd ed. Moscow: Mashinostroenie. [in Russian language]
2. Barskiy A. B. (2004). Neural networks: recognition, control, decision making. Moscow: Finansy i statistika. [in Russian language]
3. Nazarenko S. Yu., Udod V. A. (2019). Application of artificial neural networks in radiation non-destructive testing. Defektoskopiya, (6), pp. 53 – 64. [in Russian language]
4. Lunin V. P., Zhdanov A. G., Lazutkin D. Yu. (2007). Neural network defect classifier for multifrequency eddy current testing of heat exchange tubes. Defektoskopiya, (3), pp. 37 – 45. [in Russian language]
5. Kuz'min E. V., Gorbunov O. E., Plotnikov P. O. et al. (2018). Application of neural networks for recognition of structural elements of rails on magnetic and eddy current defectograms. Modelirovanie i analiz informatsionnyh sistem, Vol. 25, (6), pp. 667 – 679. [in Russian language]
6. Vavilov V. P., Nesteruk D. A. (2011). Active thermal control of composite materials using neural networks. Defektoskopiya, (10), pp. 10 – 18. [in Russian language]
7. Schromm T., Holtmann J., Koch M., Große C. (2020). Automated detection of micrometer-cracks and delamination in CT volumes of previously stressed CFRP pressure rods. 10th Conference on Industrial Computed Tomography (iCT 2020). Available at: www.ict-conference.com/2020
8. Hill E., Dion S., Karl J. et al. (2007). Neural Network Burst Pressure Prediction in Composite Overwrapped Pressure Vessels. Journal of Acoustic Emission, 25, pp. 187 – 193.
9. Haykin S. (2006). Neutron networks. Full course. Moscow – Saint-Petersburg – Kiev. [in Russian language]
10. Va V., Ramyaa R., Srinivasa P. V., Samsingha R. V. (2019). A review of implementation of Artificial Intelligence systems for weld defect classification. Materials Today: Proceedings, 16, pp. 579 – 583.
11. Cormerais R., Duclos A., Wasselynck G. et al. (2021). A Data Fusion Method for Non-Destructive Testing by Means of Artificial Neural Networks. Sensors, Vol. 21, (8). Basel. DOI 10.3390/s21082598.
12. Margrave F. W., Rigas K., Bradley D. A., Barrowcliffe P. (1999). The use of neural networks in ultrasonic flaw detection. Measurement, Vol. 25, pp. 143 – 154.
13. Masnata A., Sunseri M. (1996). Neural network classification of flaws detected by ultrasonic means. NDT & E International, Vol. 29, (2), pp. 87 – 93.
14. Sambath S., Nagaraj P., Selvakumar N. (2011). Automatic Defect Classification in Ultrasonic NDT Using Artificial Intelligence. Journal of Nondestructive Evaluation, Vol. 30, pp. 20 – 28. DOI 10.1007/s10921-010-0086-0.
15. Liu Zhenqing. (2000). Flaw echo Location based on the Wavelet transform and Artificial Neural Network. 15th World Conference on NDT – 2000. Rome.
16. Xiaoxia Yang, Shili Chen, Shijiu Jin, Wenshuang Chang. (2013). Crack Orientation and Depth Estimation in a Low-Pressure Turbine Disc Using a Phased Array Ultrasonic Transducer and an Artificial Neural Network. Sensors, Vol. 13, pp. 12375 – 12391. DOI 10.3390/s130912375.
17. Dun Y., Chen J. H., Wang G. L. et al. (2009). Identification of Multilayered Structure Properties Using Wavelet-Fractal Dimension of Ultrasonic Data. Proceedings of 2009 IEEE International Conference on Information and Automation, ICIA 2009, pp. 990 – 994. Macau.
18. Barhatov V. A. (2006). Defect recognition using a special type of artificial neural network. Defektoskopiya, (2), pp. 28 – 39. [in Russian language]
19. Egmont-Petersen M., de Ridder D., Handels H. (2001). Image processing with neural networks: a review: Preprint, to appear in Pattern Recognition.
20. Neural Network and Semi-Automatic Scanners for NDE Applications. (1996). EPRI NDE Center. TR-107119.
21. Spanner J., Udpa L., Polikar R., Ramuhalli P. (2000). Neural networks for ultrasonic detection of intergranular stress corrosion cracking. Available at: NDT.net: 2000 – 07.
22. Bisiaux B., Deneuville F. (2011). On Line Analysis and Interpretation of Ultrasonic Images to Improve the Selectivity of the Control Installations for Steel Pipes. 5th Pan American Conference for NDT. Cancun. Available at: NDT.net: 2011 – 12.
23. Fouquet C., Histace A., Duvaut P. (2014). Automated Classification of Defect Signatures in Pipelines using Ultrasonic Images. 11th European Conference on Non-Des-tructive Testing (ECNDT 2014). Prague.
24. Meng M., Chua Y. J., Ong C. P. K. (2017). Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing, Vol. 257, pp. 128 – 135.
25. Munir N., Kim H. J., Park J., et al. (2019). Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions. Ultrasonics, Vol. 94, pp. 74 – 81. DOI 10.1016/J.ultras.2018.12.001.
26. Ye J., Toyama N. (2021). Benchmarking deep learning models for automatic ultrasonic imaging inspection. IEEE Acess, Vol. 9, pp. 36986 – 36994.
27. Virkkunen I., Koskinen T. (2019). Flaw Detection in Ultrasonic Data Using Deep Learning. Baltica XI: International Conference on Life Management and Maintenance for Power Plants. VTT Technical Research Centre of Finland. Espoo.
28. Koskinen T., Virkkunen I., Siljama O., Jessen-Juhler O. (2021). The effect of different flaw data to machine learning powered ultrasonic inspection. Journal of Nondestructive Evaluation, Vol. 40, (1). Available at: https://doi.org/10.1007/s10921-021-00757-x
29. Lawson S. W., Parker G. A. (1996). Automatic detection of defects in industrial ultrasound images using a neural network. Proceedings of SPIE, Vol. 2786, pp. 37 – 47.
30. Lawson S. (1997). Recent developments for automatic online TOFD inspection. NDT.net, (9).
31. Lalithakumari S., Sheelarani B., Venkatraman B. (2012). Classification of TOFD Signals by Artificial Neural Network. 18th World Conference on Nondestructive Testing, WCNDT 2012. Durban. Available at: wcndt2012/index.htm
32. Kumari S. L., Rani B. Sh., Venkatraman B. (2011). Wavelet Transform based Denoising of ToFD signals of austenitic stainless steel welds. CiiT International Journal of Digital Signal Processing, (10).
33. Cenate C. F. Th., Rani B. Sh., Venkatraman B., Sangeetha D. N. (2014). Classification of Defects in Time of Flight Diffraction (TOFD) Images Using Artificial Neural Network. Available at: NDT.net: 2014 – 02. APCNDT 2013.
34. Cuenca J. F., Iske A. (2016). Persistent Homology for Defect Detection in Non-Destructive Evaluation of Materials. Available at: NDT.net: 2016-01.
35. Veiga J. L. B. C., de Carvalho A. A., da Silva I. C., Rebello J. M. A. (2005). The Use of Artificial Neural Network in the Classification of Pulse-Echo and TOFD Ultra-Sonic Signals. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. XXVII, (4), pp. 395 – 398.
36. De Moura E. P., da Silva R R., de Carvalho A. A. et al. (2003). Welding defects pattern recognition in TOFD signals using linear classifier implemented by neural networks. Proceedings of 3th PanAmerican Conference for Non-Destructive Testing. Rio de Janeiro. PANNDT, (6).
37. C’Shekhar N. Shitole, O. Zahran, Al-Nuaimy W. (2007). Combining fuzzy logic and neural networks in classification of weld defects using ultrasonic time-of-flight diffraction. Insight, Vol. 49, (2), pp. 79 – 82.
38. C’Shekhar N. Shitole, O. Zahran, Al-Nuaimy W. (2007). Advanced Neural-Fuzzy and Image Processing Techniques in The Automatic Detection and Interpretation of Weld Defects Using Ultrasonic Time-of-Diffraction. The 4th International Conference on Non-Destructive Testing (ICNDT2006). Chania.
39. Kruglov V. V., Dli M. I., Golunov R. Yu. (2001). Fuzzy logic and artificial neural networks. Moscow: Fizmatlit. [in Russian language]
40. Ravanbod H. (2005). Application of neuro-fuzzy techniques in oil pipeline ultrasonic nondestructive testing. NDT & E International, Vol. 38, pp. 643 – 653.
41. Sikora R., Baniukiewicz P., Chady T. et al. (2012). Artificial Neural Networks and Fuzzy Logic in Nondestructive Evaluation. 18th World Conference on Nondestructive Testing (WCNDT 2012). Durban.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2022.05.pp.012-025

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.05.pp.012-025

and fill out the  form  

 

.

 

 
Search
Rambler's Top100 Яндекс цитирования