DOI: 10.14489/td.2022.05.pp.048-059
Vasenin A. B., Stepanov S. E., Ippolitov V. A., Pogodina S. A., Kryukov O. V. CREATION OF A MULTI-LEVEL AUTOMATED CONTROL SYSTEM FOR MONITORING THE SAKHALIN–KHABAROVSK–VLADIVOSTOK MAIN GAS PIPELINE (pp. 48-59)
Abstract. The features of the design and implementation of the integrated automated control system of the Sakhalin–Khabarovsk–Vladivostok main gas pipeline, which provides reliable and energy-efficient operation of natural gas supplies to consumers of the Far Eastern region of the Russian Federation and energy exports to foreign countries, are considered. The natural-climatic and geophysical conditions of laying the gas pipeline route are presented, which determine the set of functional capabilities for monitoring and managing technological processes of gas transportation. A hierarchical structure of an integrated automated process control system is proposed, which provides adequate monitoring of stochastic disturbances of a natural and technological nature based on intelligent sensors and basic principles of information exchange organization. Examples of innovative design solutions for the functional structure and architecture of the organizational and functional automated control system of the gas pipeline, as well as technical means as part of the structure of the complexes of technical means of automated control systems functioning as part of control rooms are considered. A scientifically based procedural algorithm for calculating the stress-strain state for the monitoring site based on the analysis of sensor readings for short-term forecasting of changes in the technical condition of the gas pipeline has been obtained.
Keywords: main gas pipeline, active tectonic fault, control, monitoring, multi-level automated control system, high-risk object, prediction of technical condition.
A. B. Vasenin, S. E. Stepanov (Gazprom Design LLC, N. Novgorod, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. A. Ippolitov, S. A. Pogodina, O. V. Kryukov (TSN-electro LLC, N. Novgorod, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Voronkov V. I., Rubtsova I. E. (2010). Power supply and electrical equipment of linear consumers of main gas pipelines. Gazovaya promyshlennost', (3), pp. 32 – 37. [in Russian language] 2. Gulyaev I., Teplukhov D. (2020). Invariant Automatic Control System for a Group of Fans in Gas Air Cooling Devices by Means of Energy Efficiency Algorithms. 11th International Conference on Electrical Power Drive Systems, ICEPDS 2020: Proceedings. Article Number 9249270. Saint Petersburg. 3. Valtchev S., Meshcheryakov V. N., Belousov A. S. (2020). Comparative Analysis of Electric Drives Control Systems Applied to Two-Phase Induction Motors. Proceedings – 2020. 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2020, pp. 918 – 922. Lipetsk. 4. Repin D. G. (2017). Concepts of the monitoring system for the technical condition of compressor stations. Kontrol'. Diagnostika, (12), pp. 30 – 35. [in Russian language]. DOI 10.14489/td.2017.12.pp.030-035 5. Saushev A., Shergina O., Butsanets A. (2021). Electromagnetic Compatibility of Multifunctional Automation Systems for Electrical Equipment Using the Example of Electric Drives. E3S Web of Conferences, Vol. 244. XXII International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies (EMMFT-2020). Article Number 09007. 6. Serebryakov A. V. (2016). Active and Adaptive Algorithms of Autonomous Power Plants Control and Monitoring. 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016: Proceedings. Chelyabinsk. 7911445. 7. Blagodarov D. A., Dulnev N. N., Safonov Y. M. et al. (2018). Intelligent Control of electric Machine Drive Systems. 10th International Conference on Electrical Power Drive Systems, ICEPDS 2018: Conference Proceedings, (10). Novocherkassk. 8. Gulyaev I. V., Teplukhov D. Y. (2019). Method for Stabilizing the Operation of Synchronous Machines using a Virtual Load Sensor. Russian Electrical Engineering, Vol. 90, (7), pp. 473 – 478. 9. Kryukov O. V. (2018). Evaluation of operational factors of electric gaspumping units according to regulatory monitoring requirements. Kontrol'. Diagnostika, (10), pp. 50 – 57. [in Russian language] DOI 10.14489/td.2018.10.pp.050-057. 10. Serebryakov A. V. (2016). Modern Systems of Outdoor Illumination for Compressor Stations. Light & Engineering, Vol. 24, (2), pp. 128 – 131. 11. Vasenin A. B., Stepanov S. E., Titov V. G. (2020). Implementation of encapsulated electric gas compressor units at the facilities of Gazprom PJSC. Izvestiya vuzov. Elektromekhanika, Vol. 63, (1), pp. 31 – 37. [in Russian language] 12. Kryukov O. V. (2016). Automated loading device for comprehensive testing of reciprocating engines. Dvigatelestroenie, (2), pp. 30 – 35. [in Russian language] 13. Serebryakov A. V. (2017). Energy Efficient Power Supply Systems of Oil and Gas Pipelines Electric Drives. Bulletin of South Ural State University. Series: Power Engineering, Vol. 17, (3), pp. 102 – 110. 14. Kryukov O. V. (2005). Fast Walsh Transformation Algorithms in Microprocessor Control Systems. Izvestiya vuzov. Elektromekhanika, (4), pp. 39 – 44. [in Russian language] 15. Belousov A. S., Meshcheryakov V. N., Valtchev S. (2019). Development of a Control Algorithm for Three-phase Inverter in Two-phase Electric Drives Reducing the Number of Commutations. Proceedings of 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2019, pp. 444 – 449. DOI 10.1109/summa48161.2019.8947487.
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2022.05.pp.048-059
and fill out the form
|