DOI: 10.14489/td.2024.12.pp.033-041
Grigoriev S. N., Kozochkin M. P., Volosova M. A., Okunkova A. A. ACOUSTIC MONITORING OF LASER PULSES IN PROCESSING OF METAL-CERAMIC HARD ALLOY (pp. 33-41)
Abstract. This work is devoted to studying the relationship between the factors of processing with laser pulses of T15K6 hard alloy, the parameters of acoustic emission, and process productivity. The laser source was a pulsed fiber laser with a wavelength of 1064 nm, a power of 20 to 60 W, and pulse duration of 250 to 500 ns. The main dependencies for the lower and upper frequency ranges (10-28 kHz and 32-70 kHz) were plotted. Acoustic emission signals provide insight into the effects of concentrated energy flows on material and can be used to understand hard-to-observe phenomena and ongoing processing performancence.
Keywords: vibroacoustic emission, laser processing, control, productivity, cutting insert, spectral analysis, hard alloy T15K6.
S. N. Grigoriev, M. P. Kozochkin, M. A. Volosova, A. A. Okunkova (Moscow State University of Technology “STANKIN”, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Grigor'ev S. N., Smolentsev E. V., Volosova M. A. (2009). Technology of processing with concentrated energy flows: textbook. Stariy Oskol. [in Russian language] 2. Vityaz' P. A., Gordienko A. I., Heyfets M. L. (2011). Design of processes using concentrated energy flows for strengthening processing of structural materials. Uprochnyayushchie tekhnologii i pokrytiya, 73(1), 8 – 14. [in Russian language] 3. Andronchev I. K., Perevertov V. P., Abulkasimov M. M., Akaeva M. O. (2020). Concentrated energy flows for traditional and additive technologies in smart manufacturing environments. Promyshlenniy transport Kazahstana, 66(1), 162 – 172. [in Russian language] 4. Grigor'ev S. N., Teleshevskiy V. I. (2011). Problems of measurement in technological processes of shaping. Izmeritel'naya tekhnika, (7), 3 – 7. [in Russian language] 5. Pavlov M. D., Konov S. G., Okun'kova A. A., Nazarov A. P. (2012). Features of the use of optical control tools in the manufacture of products using selective laser melting. Kontrol'. Diagnostika, (12), 45 – 50. [in Russian language] 6. Grigor'ev S. N., Kozochkin M. P., Okun'kova A. A. (2015). Study of prospects for monitoring electrical erosion processes based on changes in vibration parameters. Izvestiya vuzov. Aviatsionnaya tekhnika, (4), 117 – 122. [in Russian language] 7. Aksenov I. B. (2005). Flaw detection based on fractal properties of acoustic responses. Izvestiya vuzov. Aviatsionnaya tekhnika, (2), 78 – 80. [in Russian language] 8. Budenkov G. A., Nedzvetskaya O. V., Budenkov B. A. et al. (2004). Acoustic flaw detection of rods using multiple reflections. Defektoskopiya, (8), 50 – 55. [in Russian language] 9. Frantsev E. F. (2013). Flaw detection of ship hulls made of composite materials in service using acoustic non-destructive testing methods. Defektoskopiya, (1), 3 – 11. [in Russian language] 10. Machihin A. S., Chernov D. V., Marchenkov A. Yu. et al. (2023). Acoustic emission flaw detection of paratellurite crystals. Fizika tverdogo tela, 65(11), 2000 – 2007. [in Russian language] 11. Belikov V. T. (2023). Interpretation of the results of observations of acoustic emission in a collapsing solid. Prikladnaya mekhanika i tekhnicheskaya fizika, Vol. 64 379(3), 199 – 206. [in Russian language] 12. Karpov M. A. (2018). Relationship between the speed of propagation of surface acoustic waves in metals and the magnitude of stress in them. Vestnik sovremennyh issledovaniy, 27(12-10), 207 – 210. [in Russian language] 13. Belyaev A. K., Polyanskiy V. A., Tret'yakov D. A. (2020). Assessment of mechanical stress, plastic deformation and damage using acoustic anisotropy. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika, (4), 130 – 151. [in Russian language] 14. Sergeeva O. A., Gonchar A. V. (2021). Change in the acoustic anisotropy parameter of structural steel during fatigue failure. Inzhenerniy zhurnal: nauka i innovatsii, 119(11). [in Russian language] 15. Luzina N. P., Tkalich V. L. (2007). Acoustic emission control method for assessing the degree of degradation of mechanical properties and residual service life of pipe steels. Nauchno-tekhnicheskiy vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta informatsionnyh tekhnologiy, mekhaniki i optiki, 38, 213 – 218. [in Russian language] 16. Bykov S. P., Ivanov V. I. (2008). Acoustic emission during crack growth in a viscoelastic material. Zavodskaya laboratoriya. Diagnostika materialov, 74(9), 47 – 52. [in Russian language] 17. Smirnov A. N., Ababkov N. V., Glinka A. S. (2014). Evaluation of gradient structures and internal stress fields in 35KhGS steel after turning using electron microscopic and acoustic methods. Svarka i diagnostika, (3), 18 – 21. [in Russian language] 18. Makarov S. V., Plotnikov V. A., Potekaev A. I. (2014). Macroscopic correlation of deformation events in a weakly stable state of the crystal lattice and the spectral density of acoustic emission signals. Izvestiya vuzov. Fizika, 57(7), 81 ‒ 86. [in Russian language] 19. Gaponov V. L., Kuznetsov D. M., Cherunova E. S. (2009). Application of the acoustic emission method for monitoring technological processes in liquid media. Izvestiya vysshih uchebnyh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskie nauki, 152(4), 47 – 54. [in Russian language] 20. Lyahovitskiy M. M., Roshchupkin V. V., Pokrasin M. A., Chernov A. I. (2010). Study of the processes of melting and crystallization of tin using the acoustic emission method. Fizika i himiya obrabotki materialov, (1), 84 ‒ 87. [in Russian language] 21. Gaponov V. L., Kuznetsov D. M., Cherunova E. S. (2009). Application of the acoustic emission method for monitoring technological processes in liquid media. Izvestiya vysshih uchebnyh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskie nauki, 152(4), 47 ‒ 54. [in Russian language] 22. Mokritskiy B. Ya., Mokritskaya E. B. (2018). Comparative evaluation of elastic properties of tool materials by pendulum scribing. Kontrol'. Diagnostika, (3), 52 – 57. [in Russian language] DOI: 10.14489/td.2018.03.pp.052-057 23. Krylov E. G., Sergeev A. S. (2014). The ultimate state control of multiblade carbide tools. Kontrol'. Diagnostika, (10), 30 – 35. [in Russian language] DOI: 10.14489/td.2014.010.pp.030-035 24. Grigor'ev S. N., Kozochkin M. P., Fedorov S. V. et al. (2015). Study of the electrical discharge machining process using vibroacoustic diagnostics. Izmeritel'naya tekhnika, (8), 33 – 37. [in Russian language] 25. Kozochkin M. P., Grigor'ev S. N., Okun'kova A. A., Porvatov A. N. (2015). Monitoring of electrical discharge machining processes based on acoustic emission parameters. STIN, (8), 28 – 33. [in Russian language] 26. Melnik Y. A., Kozochkin M. P., Porvatov A. N., Okunkova A. A. (2018). On Adaptive Control for Electrical Discharge Machining Using Vibroacoustic Emission. Technologies, (6).
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2024.12.pp.033-041
and fill out the form
|