DOI: 10.14489/td.2024.12.pp.049-058
Artemiev B. V., Zhalnin V. P., Baryshnikova E. P. ANALYSIS OF 3D INTEGRATION TECHNOLOGY IN ELECTRONICS FROM THE PERSPECTIVE OF MONITORING AND DIAGNOSTICS (pp. 49-58)
Abstract. This article provides a review and analysis of 3D integration technologies from the perspective of control and diagnostics. The main objective of this article is to analyze and compare a wide range of solutions in this area. It examines various technologies that are already widely used in electronics, as well as their differences among themselves and their advantages in certain areas of electronic equipment production. The advantages of three-dimensional integration over other technologies for manufacturing electronic components are determined and the problems of assessing the results of using these technologies when using NDT methods are shown. The main areas of electronics in which these technologies are currently used most widely are identified, including the production of memory units, processors, touch screen controllers and embedded systems. Possible ways for the development of three-dimensional integration have been identified, and problems, primarily quality control in intermediate operations, which currently need to be solved for the further integration of these technologies into production.
Keywords: three-dimensional integration, X-ray tomography, three-dimensional packaging, TSV connections, interposer, monolithic 3D chip, control and diagnostics.
B. V. Artemiev, V. P. Zhalnin, E. P. Baryshnikova (Bauman Moscow State Technical University ‒ BMSTU (NRU), Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Vasil'ev A. (2010). Modern 3D integration technologies. Komponenty i tekhnologii, (1), 81 ‒ 84. [in Russian language] 2. Bespalov V. A., Fomichev M. Yu., Dyuzhev N. A. et al. (2022). TSV is a key technology for building 3D integrated circuits. Nanostruktury. Matematicheskaya fizika i modelirovanie, (1), 19 ‒ 44. [in Russian language] 3. Tyul'panov V., Vasil'ev A. (2013). Assembly of integrated circuits using 3D integration technology. Promyshlennye nanotekhnologii, 13, 28 ‒ 36. [in Russian language] 4. Vnukov S. (2012). 3D integration technologies: problems and prospects. Tekhnika i tekhnologii, (3), 16 ‒ 19. [in Russian language] 5. Yu-Hao Kuo, Dinh-Phuc Tran, Jia-Juen Ong et al. (2022). Hybrid Cu-to-Cu Bonding with Nano-Twinned Cuand Non-Conductive Paste. Journal of Materials Research and Technology, 18(3), 859 – 871. 6. Lekhner A., Shteffan E. P., Roter T. (2008). Y.QuickScan technology - fast microfocus computed tomography (μCT) for production semiconductor devices and SMT applications. Komponenty i tekhnologii, (4), 220 ‒ 222. [in Russian language] 7. Garrou P. (2012). Introduction to 3D Integration. Hoboken: Wiley-VCH Verlag GmbH & Co. KGaA. 8. Ferguson Dzh., Vertyanov D., Felton K. et al. (2021). Design of cases and microassemblies using FO WLP technology using CAD MENTOR GRAPHICS. Elektronika NTB, (4), 56 ‒ 64. [in Russian language] 9. Solberg V. 2.5D and 3D Semiconductor Package Technology: Evolution and Innovation. Retrieved from https://smtnet.com/library/files/upload/25d-3d-semiconductor-packaging.pdf (Accessed: 20.05.2024). 10. Sun Y., Jin Z., Luo J. et al. (2017). Ding Modeling and Fabrication of the Redistribution Layer on the 2.5D Si Interposer. 18th International Conference on Electronic Packaging Technology, 157 – 161. Harbin: IEEE Xplore. 11. Yoon S. W., Ku J. H., Suthiwongsunthorn N. et al. (2009). Fabrication and Packaging of Micro Bump Interconnections for 3D TSV. IEEE International Conference on 3D System Integration. San Francisco: IEEE Xplore. 12. Maresca L. On the Design Partitioning of 3D Monolithic Circuits. Retrieved from https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=8365&context=masters_theses (Accessed: 20.05.2024). 13. Athikulwongse K., Ekpanyapong M., Lim S. K. (2014). Exploiting Die-to-Die Thermal Coupling in 3-D IC Placement. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22, 2145 ‒ 2155. 14. Chen D. Y., Chiou W. C., Chen M. F. et al. (2009). Enabling 3D-IC Foundry Technologies for 28 nm Node and Beyond: Through-Silicon-Via Integration with High Throughput Die-to-Wafer Stacking. IEEE International Electron Devices Meeting (IEDM). Baltimore: IEEE Xplore. 15. Yudintsev V. (2011). 3D silicon technology: what, where, when? (Part 1). Elektronika NTB, (4), 70 ‒ 75. [in Russian language] 16. Yudintsev V. (2011). 3D silicon technology: what, where, when? (Part 2). Elektronika NTB, (5), 96 ‒ 103. [in Russian language] 17. Toshiba commercializes Industry's Highest Capacity Embedded Nand Flash Memory for Mobile Consumer Products. Retrieved from https://web.archive.org/web/20101123023805/http://www.toshiba.com/taec/news/press_releases/2007/memy_07_470.jsp 18. Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices. Retrieved from https://www.global.toshiba/ww/news/corporate/2008/08/pr0701.html 19. Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules. Retrieved from https://www.global.toshiba/ww/news/corporate/2010/06/pr1701.html 20. New standard for high-speed memory High Bandwidth Memory. Retrieved from https://www.ixbt.com/video3/amd-hbm.shtml [in Russian language] 21. Samsung Begins Mass Producing World’s Fastest DRAM – Based on Newest High Bandwidth Memory (HBM) Interface. Retrieved from https://news.samsung.com/global/samsung-begins-mass-producing-worlds-fastest-dram-based-on-newest-high-bandwidth-memory-hbm-interface 22. Samsung Starts Production of 512 GB UFS NAND Flash Memory: 64-Layer V-NAND, 860 MB/s Reads. Retrieved from https://www.anandtech.com/show/12120/samsung-starts-production-of-512-gb-ufs-chips 23. Samsung makes 1TB flash eUFS module. Retrieved from https://www.electronicsweekly.com/news/business/samsung-makes-1tb-flash-module-2019-01/ 24. The first 3D processor runs at 1.4 GHz. Retrieved from https://www.nix.ru/computer_hardware_news/hardware_news_viewer.html?id=152585 [in Russian language] 25. Intel Ivy Bridge processors will be the first to receive new 3D transistors. Retrieved from https://www.ferra.ru/news/computers/processory-intel-ivy-bridge-pervymi-poluchat-novye-3d-tranzistory-05-05-2011.htm [in Russian language] 26. Knechtel J., Markov I. L., Lienig J. (2012). Assembling 2-D Blocks into 3-D Chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, (2), 228 ‒ 241. 27. Artem'ev B. V., Isroilov Zh. O., Samuhaer Mulatola, Selivanov K. V. (2024). Equipment for x-ray inspection of printed circuit boards, including BGA. Kontrol'. Diagnostika, 27(7), 53 – 66. [in Russian language] DOI: 10.14489/td.2024.07.pp.054-067
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2024.12.pp.049-058
and fill out the form
|