Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
22 | 01 | 2025
2025, 01 January

DOI: 10.14489/td.2025.01.pp.013-025

Stepanova L. N., Kurbatov A. N., Kabanov S. I., Beher S. A., Chernova V. V., Terekhova E. S.
RESEARCH OF THE POSSIBILITY OF COMPLEX APPLICATION OF ACOUSTIC EMISSION METHODS, TENSOMETRY AND EFFECT OF ACOUSTOELASTICITY FOR CONTROL OF CARBON PLASTIC RESTRICTS UNDER STATIC LOADING
pp. (13-25)

Abstract. The article presents results of studying the process of destruction of carbon fiber reinforced plastic samples under static tension. To control defects, strain gauge, acoustoelasticity effect and acoustic emission method were used. The possibility and advantages of using the acoustoelasticity method for determining deformations in a composite material are shown. The relationship between the deformation of carbon fiber and the time parameters of Lamb waves measured by the ultrasonic system "Acoustic-1" is established. The reliability of defect location is ensured by the acoustic emission method. In addition, the deformations were measured by the certified high-speed strain gauge system "Dynamics-3". During the tests, the results of deformation measurements obtained using strain gauge and the acoustoelasticity method were compared. Deformations were determined through the delay times of the elastic Lamb wave. It was found that the reduced errors obtained when measuring deformations through the delay times of the elastic Lamb wave were less than 5 %. The reduced errors obtained in determining the deformations of carbon fiber samples using strain gauges did not exceed 3 %. Using the effect of acoustoelasticity simplifies control, reduces the time for diagnosing defects in composite structures, and eliminates the operation of gluing strain.

Keywords: sample, carbon fiber, acoustoelasticity, strain measurement, acoustic emission, strain gauge, piezoelectric transducer, statics, time, speed, ultrasound.

L. N. Stepanova (FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. N. Kurbatov (The Siberian Transport University, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. I. Kabanov (FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. A. Beher, V. V. Chernova (The Siberian Transport University, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
E. S. Terekhova (FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Stepanova L. N., Kabanov S. I., Chernova V. V. (2022). Location of acoustic emission signals from impacts on a carbon fiber sample using antennas made of piezo- and fiber-optic sensors. Defektoskopiya, (4), 3 – 13. [in Russian language]. DOI: 10.31857/S0130308222040017
2. Atmethanov R. S., Dubinin E. F. (2020). Method for analyzing acoustic signals in the diagnosis of composite materials. Problemy mashinostroeniya i nadezhnosti mashin, (2), 106 – 112. [in Russian language]. DOI: 10.31857/S0235711920020030
3. Bautin A. A. (2019). Monitoring of aircraft structural elements using strain gauge data. Zavodskaya laboratoriya. Diagnostika materialov, 85(1–1), 57 – 73. [in Russian language]. DOI: 10.26896/1028-6861-2019-85-1-I-57-63
4. Fedotov M. Yu., Babin S. A., Budadin O. N., Kozel'skaya S. O. (2024). Study of the possibility of diagnosing stresses of composite structures based on monitoring deformation and acoustic emission with integrated fiber-optic sensors. Kontrol'. Diagnostika, 27(9), 25 – 36. [in Russian language]. DOI: 10.14489/td.2024.09.pp.024-035
5. Barsuk V. E., Anohin G. G., Stepanova L. N., Chernova V. V. (2016). Strength testing of carbon fiber rein-forced plastic aircraft structures using the acoustic emission and strain gauge method. Polet, (7), 53 – 60. [in Russian language]
6. Bryanskiy A. A., Bashkov O. V. Belova I. V., Bashkova T. I. (2022). Study of developing damage under flexural loading of polymer composite materials and their identification by acoustic emission method. Frontier Materials &Technologies, (2), 7 – 16. [in Russian language]. DOI: 10.18323/2782-4039-2022-2-7-16
7. Stepanova L. N., Chernova V. V., Ramazanov I. S. (2020). Acoustic emission control of early defect generation in carbon fiber samples under static and thermal loading. Defektoskopiya, (10), 12 – 23. [in Russian language]. DOI: 10.31857/S0130308220100024
8. Buymistryuk G., Nikolaev V., Bazlov M. (2014). Sensor devices based on the intra-fiber Doppler effect. Fotonika, 48(6), 56 – 60. [in Russian language]
9. Romashko R. V., Bashkov O. V., Efimov T. A. et al. (2024). Features of the use of adaptive interferometric fiber-optic acoustic emission sensors for monitoring the condition of polymer composite materials. Defektoskopiya, (1), 21 – 27. [in Russian language]. DOI: 10.31857/S0130308224010023
10. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. et al. (2021). Acoustic emission signals location in duralumin and carbon fiber samples by optical fiber and piezoelectric transducer sensors antenna. Kontrol'. Diagnostika, 24(2), 18 – 29. [in Russian language]. DOI: 10.14489/td.2021.02.pp.018-029
11. Jihyun Jun, Young Dae Shim, Kyung Young Jhang. (2020). Stress Estimation Using the Acoustoelastic Effect of Surface Waves in Weak Anisotropic Materials. Applied Science, (10). DOI: 10.3390/app10010169
12. Kurashkin K. V. (2019). Study of the acoustoelastic effect in an anisotropic plastically deformed material. Akusticheskiy zhurnal, 65(3), 382 – 388. [in Russian language]. DOI: 10.1134/S0320791919030055
13. Yang Yi, Ng Ching Tai, Mohabuth M., Kotousov A. (2019). Finite Element Prediction of Acoustoelastic Effect Associated with Lamb Wave Propagation in Prestressed Plates. Smart Materials and Structures, 28(9). DOI: 10.1088/1361-665x/ab2dd3
14. Muyakshin S. I., Didenkulov I. N., V'yugin P. N. et al. (2021). Study of a method for detecting and localizing inhomogeneities in plates using Lamb waves. Akusticheskiy zhurnal, 67(3), 270 – 273. [in Russian language]. DOI: 10.31857/S0320791921030114
15. Burkov M. V., Eremin A. V., Byakov A. V. et al. (2021). Diagnostics of impact damage of monolithic and cellular carbon fiber reinforced plastics using ultrasonic Lamb waves. Defektoskopiya, (2), 33 – 43. [in Russian language]. DOI: 10.31857/S0130308221020044
16. Soutis C., Diamanti K. (2007). Impact Damage Detection in Composite Sandwich Structures by Low Frequency Lamb Waves. ICCES, 1(2), 49 – 54.
17. Osetrov A. V., Fröhlich H.-J., Koch R., Chilla E. (2000). Acoustoelastic effect in anisotropic layered structures. Physical Review B, Vol. 621 21, 13963 – 13969. DOI: 10.1103/PhysRevB.62.13963
18. Stepanova L. N., Kabanov S. I., Kurbatov A. N. et al. (2023). Ultrasonic system for determining longitudinal mechanical stresses in rails. Datchiki i sistemy, (1), 31 – 39. [in Russian language]. DOI: 10.25728/datsys.2023.1.5

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.01.pp.013-025

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования