DOI: 10.14489/td.2025.03.pp.021-031
Zagidulin R. V., Bakiev A. T., Baykova A. R. THE STUDY OF THE EDDY CURRENT DISTRIBUTION AREA INDUCED BY SURFACE EDDY CURRENT PROBE IN MAIN GAS PIPELINE METAL HOT-DIP GALVANIZING UNITS (pp. 21-31)
Abstract. The distribution area of eddy currents induced on metallic surfaces by the alternating magnetic field of surface eddy current probes (ECPs) is investigated. Analytical calculations reveal that the effective eddy current distribution excited by surface ECPs forms a circular region, with its radius determined by the core diameter of the surface ECP. Various approaches for estimating the spatial extent of eddy current distribution induced by surface ECPs are examined. The study indicates that more accurate results are achieved by determining the boundary of the eddy current distribution area through calculations of the magnetic moment, which directly influences the amplitude of the signal generated by the surface ECP. Quantitative evaluations are provided for the eddy current distribution area produced by surface ECPs of eddy current flaw detectors, particularly those recommended for eddy current flaw detection of main gas pipelines. The study also identifies critical interprobe spacing parameters in multiprobe (matrix) ECP systems, including the maximum spacing that eliminates mutual interference and the minimum spacing that maximizes interactions between individual probes.
Keywords: eddy current flaw detector, eddy current probe, multiple-unit eddy current probe, eddy current distribution area, signal amplitude, main gas pipeline, stress-corrosion crack.
R. V. Zagidulin (FSBEI HE USPTU, Ufa, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. T. Bakiev (Engineering and technical center LLC “Gazprom transgaz Ufa”, Ufa, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. R. Baykova (LLC “Bashgiproneftekhim”, Ufa, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Fedosenko Yu. K., Shkatov P. N., Efimov A. G. (2011). Eddy current testing. Moscow: Izdatel'skiy dom «Spektr». [in Russian language] 2. Konnov V. V., Konnov Vl. Vl., Kuznetsov A. M. et al. (2015). The results of the pilot operation of the automated scanner-flaw detector asd «Vikhr» during overhaul of the linear part of main gas pipelines. Kontrol'. Diagnostika, (2), 32 ‒ 37. [in Russian language] DOI: 10.14489/td.2015.02.pp.032-037 3. Konnov A. V., Kuznetsov A. M., Zagidulin T. R., Zagidulin R. V. (2013) Electromagnetic control of the surface of steel gas pipelines in the process of reinsulation. International scientific and technical conference "Achievements in the physics of non-destructive testing", 182 – 189. Minsk. [in Russian language] 4. Konnov V. V., Konnov A. V., Zagidulin R. V., Zagidulin T. R. (2014). Automated eddy current scanner-flaw detector for inspection of main steel pipelines. 11th European Scientific and Technical Conference on Non-Destructive Testing. Prague. [in Russian language] 5. Konnov Vl. Vl., Konnov A. V., Kuznetsov A. M. et al. (2015). Automated eddy current testing of a steel gas pipeline during major repairs. Reports of the session “Problems of interaction between universities, research institutes and the Russian Academy of Sciences in the training of engineering and scientific personnel in non-destructive testing and technical diagnostics”, 138 – 144. Moscow: Izdatel'skiy dom «Spektr». [in Russian language] 6. Shubochkin A. E., Efimov A. G. (2011). Experience in operating the VD-90NP eddy current flaw detector for non-destructive testing during major repairs of main gas pipelines. 19th All-Russian Scientific and Technical Conference on Non-Destructive Testing and Technical Diagnostics, 152 – 153. Samara. [in Russian language] 7. Mitorhin M. Yu., Veliyulin I. I., Kas'yanov A. N. et al. (2010). Analysis of means and technologies for technical diagnostics and pipe rejection during major repairs of the linear part of the main gas pipelines of OJSC Gazprom. Territoriya neftegaz, (12), 57 ‒ 60. [in Russian language] 8. Organization and carrying out technical diagnostics of the linear part of main gas pipelines using external scanners-flaw detectors during major repairs. General requirements. (2012). Organization standard No. R Gazprom 2-2.3-569‒2011. Moscow: OAO «Gazprom». [in Russian language] 9. Konnov A. V. (2013). Automated electromagnetic (eddy current) scanner-flaw detector ASD “Vikhr”. Elektronniy nauchniy zhurnal «Neftegazovoe delo», (5), 1 ‒ 18. [in Russian language] 10. Konnov A. V. (2013). Analysis and interpretation of signals during non-destructive testing of steel gas pipelines using an electromagnetic flaw detector ASD “Vikhr”. Elektronniy nauchniy zhurnal «Neftegazovoe delo», (5), 385 ‒ 401. [in Russian language] 11. Klyuev V. V. (Ed.), Fedosenko Yu. K., Gerasimov V. G., Pokrovskiy A. D., Ostanin Yu. Ya. (2006). Non-destructive testing: reference book: in 8 volumes. Vol. 2. Book 2. Eddy current testing. Moscow: Mashinostroenie. [in Russian language] 12. Efimov A. G., Shubochkin A. E. (2013). Signal distribution of a surface-mounted eddy current transducer over a steel product with a surface continuity defect of finite length. Kontrol'. Diagnostika, (3), 49 ‒ 55. [in Russian language] 13. Zagidulin R. V., Zagidulin T. R., Konnov A. V. (2014). Symbolic calculation of surface eddy current transducers signal over discontinuity type pitting of metal. Part 1. Kontrol'. Diagnostika, 193(7), 33 ‒ 38. [in Russian language] DOI: 10.14489/td.2014.07.pp.033-038 14. Zagidulin R. V., Zagidulin T. R., Konnov A. V. (2014). Symbolic calculation of surface eddy current transducers signal over discontinuity type pitting of metal. Part 2. Kontrol'. Diagnostika, 194(8), 13 ‒ 18. [in Russian language] DOI: 10.14489/td.2014.08.pp.013-018 15. Bessonov L. A. (2003). Theoretical foundations of electrical engineering. Electromagnetic field. Moscow: Gardariki. [in Russian language] 16. Zagidulin R. V., Muzhitskiy V. F., Efimov A. G. et al. (2007). Study of the influence of corrosion products of a main oil product pipeline on the signal of a VD-12NFP eddy current flaw detector. Kontrol'. Diagnostika, (9), 42 ‒ 46. [in Russian language] 17. Zagidulin R. V. (2000). Towards the calculation of the magnetic field of a continuity defect taking into account the nonlinearity of the magnetic properties of a ferromagnet. Defektoskopiya, (5), 43 ‒ 54. [in Russian language] 18. Main gas pipelines. Diagnostic examination. Stress-corrosion defects of pipes. Assessment methodology. (2021). Organization standard No. R Gazprom 2-2.3-1251‒2021. Moscow: OAO «Gazprom». [in Russian language]
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2025.03.pp.021-031
and fill out the form
|