Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
31 | 03 | 2025
2025, 03 March

DOI: 10.14489/td.2025.03.pp.044-055

Golobokov M. V.
AN OPTICAL METHOD FOR CORRECTING THE EMISSIVITY OF BLACKBODY MODELS
(pp. 44-55)

Abstract. Modern infrared thermometers are designed to measure the temperature of objects with an emissivity from 0.1 to 1.0. However, when approving the type, checking or calibrating infrared thermometers, metrological characteristics are determined only when the emissivity is close to one. It is impossible to perform objective control at other emissivity values due to the lack of necessary standards. The paper describes an optical method for correcting the emissivity of black body models. The method is based on the use of the properties of reflection and refraction of light at homogeneous flat interfaces of media. Viewing windows made of optical glass of the KI brand, calcium fluoride of the FC-I brand and potassium bromide are used as media separators. The possibility of reducing the emissivity of a black body to ≈ (0.5…0.6) is theoretically justified and experimentally confirmed. The additional temperature reproduction error, depending on the temperature and the material of the viewing windows, does not exceed 2.0…4.7 °C. The optical method of emissivity correction can be used to: improve reference models of a black body; calibrate infrared thermometers with an established emissivity of less than 0.99; verify algorithms for accounting for the emissivity of an object implemented in verifiable pyrometers.

Keywords: black body, gray body, infrared thermometers, verification.

M. V. Golobokov (State regional center of standardization, Metrology and testing in the Novosibirsk region (FBA “Novosibirsk CSM”), Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Rusin S. P., Peletskiy V. E. (1987). Thermal radiation of cavities. Moscow: Energoatomizdat. [in Russian language]
2. Prokhorov A. V., Hanssen L. M. (2004). Effective Emissivity of a Cylindrical Cavity with an Inclined Bottom: I. Isothermal cavity. Metrologia, 41, 421 – 431.
3. Vinogradov V. S., Ivanov A. V., Pal'chits A. A., Cheredov V. V. (2003). Integral absorption capacity of dielectric coatings on a metal base in the IR wavelength range. Trudy MAI, 13. Retrieved from https://trudymai.ru/published.php?ID=34438 (Accessed: 10.07.2024). [in Russian language]
4. Minkina W., Dudzik S. (2009). Infrarad Thermograpy. Errors and Uncretainties. New York: John Wiley & Sons.
5. Gossorg Zh. (1988). Infrared thermography. Fundamentals, technology, application. Moscow: Mir. [in Russian language]
6. Golobokov M. V., Danilevich S. B. (2018). The effect of atmospheric transmission on the reliability of the results of the verification of infrared thermometers. Kontrol'. Diagnostika, (5), 26 – 31. [in Russian language] DOI: 10.14489/td.2018.05.pp.026-031
7. Belousov Yu. I., Postnikov E. S. (2019). Infrared photonics. Part I. Features of the formation and propagation of IR radiation: textbook. Saint Petersburg: Universitet ITMO. [in Russian language]
8. Zverev V. A., Krivopustova E. V., Tochilina T. V. (2009). Optical materials. Part 1. Textbook for designers of optical systems and devices. Saint Petersburg: SPbGU ITMO. [in Russian language]
9. Mihaylova D. S. (2023). Optical complex for measuring absorption spectra of adsorbed low-dimensional layers of matter. Novosibirsk: SGUGiT. [in Russian language]
10. Golobokov M. V. (2021). Metrological support for the verification of medical infrared thermometers. Kontrol'. Diagnostika, (9), 26 – 32. [in Russian language] DOI: 10.14489/td.2021.09.pp.026-032
11. Normal conditions for verification. (2001). Standard No. GOST 8.395‒80. Moscow: Izdatel'stvo standartov. [in Russian language]
12. State system for ensuring the uniformity of measurements. State verification scheme for temperature measuring instruments. (2012). Standard No. GOST 8.558‒2009. Moscow: Izdatel'stvo standartov. [in Russian language]
13. Quartz optical glass. General technical conditions. (1999). Standard No. GOST 15130‒86. Moscow: Izdatel'stvo standartov. [in Russian language]
14. Vertex-80v: User Manual. 2nd ed. (2018). Ettlingen: Bruker Optik GmbH.
15. Optical materials. Methods for measuring the refractive index. (2005). Standard No. GOST 28869‒90. Moscow: Izdatel'stvo standartov. [in Russian language]
16. GSI. Resistance thermal converters made of platinum, copper and nickel. General technical requirements and test methods. (2011). Standard No. GOST 6651‒2009. Moscow: Izdatel'stvo standartov. [in Russian language]
17. Zverev V. A., Krivopustova E. V., Tochilina T. V. (2013). Optical materials. Part 2. Textbook for designers of optical systems and devices. Saint Petersburg: SPb NIU ITMO. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.03.pp.044-055

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования