Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
25 | 06 | 2025
2025, 06 June

DOI: 10.14489/td.2025.06.pp.019-025

 

Grechishnikov V. M., Teryaeva O. V., Kapiturov A. E.
MULTICHANNEL FIBER-OPTIC CONVERTERS FOR MONITORING THRESHOLD VALUES OF PHYSICAL PARAMETERS OF PRODUCTS
(pp. 19-25)

Abstract. The article is devoted to the development of a precision optical signal scaling device intended for use as an element for assigning weighting factors in fiber-optic digital-to-analog data converters. An analysis of the metrological characteristics of existing optical attenuator designs is given. Requirements for the accuracy of optical signal weighting factor scaling devices used in amplitude fiber-optic digital-to-analog data converters are formulated. The design of a fiber-optic device that combines the functions of a two-count precision attenuator and an optical signal switch is considered. A description of the design and operating principle of the device containing channels for coarse and fine adjustment of the optical signal attenuation coefficient is given. The results of numerical modeling of the attenuator attenuation coefficients in the coarse and fine channels for various parameters of the optical and geometric parameters of the device, as well as the general adjustment characteristic, are presented. The possibility of creating an optical signal scaling device with a relative error in setting the attenuation coefficients no worse than.

Keywords: converter, attenuator, switch, design, attenuation coefficient.

V. M. Grechishnikov, O. V. Teryaeva, A. E. Kapiturov (Samara National Research University, Samara, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Zhizhin V. (2010). Fiber optic sensors: prospects for industrial application. Elektronnye komponenty, (12), 17 ‒ 23. [in Russian language]
2. Habarov S. S., Koshmin A. S. (2021). Application of fiber-optic measuring technology and phase-chronometric method for control and monitoring of technical condition of aircraft structures. Izmeritel'naya tekhnika, (2), 49 ‒ 56. [in Russian language]
3. Grechishnikov V. M., Teryaeva O. V. (2016). Fiber-optical Converter Onboard Sensors Mechanization of Aircraft Mechanization Devices. Russian Aeronautics, 59(3), 426 ‒ 432.
4. Shishkin V. V., Churin A. E., Harenko D. S., Shelemba I. S. (2013). A monitoring system for the supporting structures of a football arena based on fiber-optic sensors. Foton–Ekspress, (6), 22 ‒ 23. [in Russian language]
5. Goossens S., Berghmans F., Muñoz K., et al. (2021). A Global Assessment of Barely Visible Impact Damage for CFRP Sub-Components with FBG-BAsed Sensors. Composite Structures, 272. Retrieved from https://doi.org/10.1016/j.compstruct.2021.114025
6. Fedotov M. Yu. (2023). Methods for forming spatial topology and interrogating fiber-optic sensors for diagnostics of composite structures. Kontrol'. Diagnostika, 26(4), 24 – 37. [in Russian language] DOI: 10.14489/td.2023.04.pp.024–037
7. Voronov K. E., Grigor'ev D. P., Telegin A. M. (2021). Review of hardware for recording particle impacts on the surface of a spacecraft. Uspekhi prikladnoy fiziki, 9(3), 245 ‒ 265. [in Russian language]
8. Young-Kai Chen, Andreas Leven, Kun-Yii Tu (2006). Optical Digital to Analog Converter. Patent No. 70614114 USA.
9. John H. Hong (1991). Optoelectronic Digital to Analog Converter. Patent No. 5039988 USA.
10. Brian L. Uhlhorn (2009). Optical Digital to Analog Conversion. Patent No. 7525461 USA.
11. Teryaeva O. V. (2017). Multisensory information converters based on fiber-optic DACs. [in Russian language]
12. Grechishnikov V. M., Kapiturov A. E., Nersisyan K. B., Teryaeva O. V. (2022). Multisensor fiber-optic converter of binary mechanical signals. Nadezhnost' i kachestvo slozhnyh sistem, (3), 95 – 103. [in Russian language] DOI: 10.21685/2307–4205–2022
13. Topil'skiy V. B. (2024). Microelectronic measuring transducers: textbook. manual. 5th ed., electronic. Moscow: Laboratoriya znaniy. [in Russian language]
14. Fiber Optic Switches Overview. (2024). Retrieved from https://lenlasers.ru/novosti-i-stati/obzor-volokonno-opticheskikhpereklyuchateley/?ysclid=m8grey69gt399777521 (Accessed: 12.11.2024). [in Russian language]
15. Optical attenuators: main types and forms. (2024). Retrieved from https://modultech.ru/opticheskieattenyuatory/?ysclid=m8lr11h1pq279000251 (Accessed: 12.11.2024). [in Russian language]
16. Optical programmable attenuators. (2024). Retrieved from https://skomplekt.com/ (Accessed: 05.10.2024). [in Russian language]
17. Grechishnikov V. M., Kapiturov A. E. (2022). Adjustable optical attenuator. Ru patent No. 2768522. Russian Federation. [in Russian language]
18. Grechishnikov V. M. (2024). Multisensory binary signal converter based on a fiber-optic digital-to-analog converter. Trudy Mezhdunarodnogo simpoiziuma «Nadezhnost' i kachestvo», (1), 300 – 303. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.06.pp.019-025

and fill out the  form  

 

 
Search
Rambler's Top100 Яндекс цитирования