Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
25 | 06 | 2025
2025, 06 June

DOI: 10.14489/td.2025.06.pp.040-045

Stepanov M. V.
INFLUENCE OF TEMPERATURE ON THE METROLOGICAL CHARACTERISTICS OF FIBER-OPTIC SENSORS WITH A CLOSED OPTICAL CHANNEL
(pp. 40-45)

Abstract. In article questions of influence of temperature on metrological characteristics of optical fiber sensors with the closed optical channel with the pickups based on different effects are considered. Approximation of rated temperature dependences of function of transfer of the sensor is for this purpose carried out and sensitivity coefficients are found. Further, using the sensitivity coefficients found, the values of the additional temperature error of fiber-optic sensors measuring the following physical quantities were determined: angular displacement, tactile force and pressure. For the purpose of reduction of additional temperature error of the considered sensors the creation option with differential turning on of pickups has been considered. It has allowed to reduce additional temperature error of sensors more than much. For further reduction of size of additional temperature error of optical fiber sensors carrying out individual calibration of each copy of the sensor is offered.

Keywords: fiber-optic sensor, the approximating polynom, sensing element, additional temperature error, differential scheme of inclusion.

M. V. Stepanov (Progress Rocket Space Centre, Samara, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Aniskovich V. A., Budadin O. N., Zaikina N. L. i dr. (2018). Measurement of deformations using fiber optic sensors during strength testing of anisogrid structures made of composite materials. Kontrol'. Diagnostika, (7), 44 – 49. [in Russian language] DOI: 10.14489/td.2018.07.pp.044-049
2. Buymistryuk G. Ya. (2013). Fiber optic sensors for extreme conditions. Control Engineering Rossiya, 45(3), 34 – 42. [in Russian language]
3. Leonovich G. I., Matyunin S. A., Livochkina N. A. (2011). Multisensor fiber optic pressure transducer. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 31(7), 123 – 127. [in Russian language]
4. Fadeev K. M., Minkin A. M., Larionov D. D., Sozonov N. S. (2019). Fiber-optic high-pressure sensor based on Fabry-Perot interferometer. Spetsvypusk Foton–ekspress-nauka, (6), 336 – 337. [in Russian language]
5. Belovolov M. I., Belovolov M. M., Semenov S. L. et al (2020). Development of fiber-optic sensors for monitoring technical characteristics and assessing the performance of composite units of aviation and rocket-space equipment. Konstruktsii iz kompozitsionnyh materialov, (3), 45 – 53. [in Russian language]
6. Zhelezina G. F., Sivakov D. V., Gulyaev I. N. (2008). Embedded control: from sensors to information composites. Aviatsionnaya promyshlennost', (3), 46 – 50. [in Russian language]
7. Babaev O. G., Matyunin S. A., Stepanov M. V. (2017). Simulation of Contactless Fiber-Optic System for Valve Status Monitoring. Procedia Engineering, 176, 2 – 11. [in Russian language]
8. Smirnov D. S., Deyneka I. G., Kulikov A. V. et al (2021). Methods for studying the temperature characteristics of the sensitive element of a fiber-optic gyroscope, 245 – 246. Saint-Petersburg: Sbornik materialov XXVIII Sankt-Peterburgskoy mezhdunarodnoy konferentsii po integrirovannym navigatsionnym sistemam. [in Russian language]
9. Fedotov M. Yu. (2024). Modeling of thermal compensation of optical control data of composite structures using an external fiber-optic temperature sensor. Kontrol'. Diagnostika, 307(1), 4 – 10. [in Russian language] DOI: 10.14489/td.2024.01.pp.004-013
10. Fedotov M. Yu. (2023). Theoretical studies of thermal compensation of the results of diagnostics of polymer composites by the method of two optical fibers. Defektoskopiya, (10), 53 – 65. [in Russian language]
11. Harahnin K. A., Tereshin D. A., Vahrameev D. V., Vahrameev P. S. (2020). Fiber optic force sensor: mathematical model, transfer function, prototype development. Vestnik Cherepovetskogo gosudarstvennogo universiteta, 99(6), 45 – 58. [in Russian language]
12. Stepanov M. V. (2020). Fiber-optic sensors: prospects for application in rocket and space technology. Glavnyy metrolog, (1), 28 – 30. [in Russian language]
13. Stepanov M. V. (2024). Fiber optic sensors with closed optical channel. Datchiki i sistemy, 275(3), 17 – 23. [in Russian language]
14. Matyunin S. A., Stepanov M. V., Babaev O. G. (2020). Fiber optic sensors with closed optical channel. Samara: Insoma-Press. [in Russian language]
15. Urakseev M. A., Levina T. M. (2014). Mathematical modeling of fiber optic devices and systems based on the magneto-optical Faraday effect. Izvestiya VolGTU, 17 ‒ 22. [in Russian language]
16. Recommendation. GSI. Indirect measurements. Determination of measurement results and evaluation of their errors. (1991). Measurement technique No. MI 2083‒90. Moscow: Izdatel’stvo standartov. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.06.pp.040-045

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования