1. Laboratory of Functional Diagnostics "AQUADONIS". (n.d.). Bui Chemical Plant (official website). Retrieved March 16, 2025, from https://bhz.ru/information/manuals/laboratoriya-funktsionalnoy-diagnostiki-akvadonis/
2. Spomer, L. A. (1985). Techniques for measuring plant water. HortScience, 20(6), 1021–1028.
3. Noun, G., Cascio, M. L., Spano, D., et al. (2022). Plant-based methodologies and approaches for estimating plant water status of Mediterranean tree species: A semi-systematic review. Agronomy, 12(9), Article 2127.
4. Jones, H. G. (2007). Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany, 58(2), 119–130.
5. Awad-Allah, E. F. A. (2020). Indispensable measuring techniques for water relations of plants and soils: A review. Open Journal of Soil Science, 10(12), 616–630.
6. Kramer, P. J., & Boyer, J. S. (1995). Water relations of plants and soils. Academic Press.
7. Boyer, J. S. (1995). Measuring the water status of plants and soils. Academic Press.
8. Scholander, P. F., Bradstreet, E. D., Hemmingsen, E., & Hammel, H. (1965). Sap pressure in vascular plants; Negative hydrostatic pressure can be measured in plants. Science, 148, 339–346.
9. Perez-Harguindeguy, N., Díaz, S., Garnier, E., et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167–234.
10. Wada, H. (2004). Roles of water potential gradients and turgor in cell elongation, flowering and bulb formation [PhD thesis, Ehime University].
11. Bondareva, L. A., & Sukhanova, M. V. (2015). Assessment of the possibility of using plant functional diagnostics methods for solving environmental monitoring problems. Biotekhnosfera, (6(42)), 11–15. [in Russian language].
12. Timiryazev, K. A. (1949). Selected works (Vol. 1). OGIZ-Selkhozgiz. [in Russian language].
13. Budagovsky, A. V., Budagovskaya, O. N., & Budagovsky, I. A. (2009). Non-destructive method for functional diagnostics of plants (Patent No. RU2342825). Russian Federal Service for Intellectual Property. [in Russian language].
14. Bednenko, T., Klochan, P., & Korsunsky, V. (2003). Portable chronofluorometer for express diagnostics of photosynthesis. Elektronnye Komponenty i Sistemy, (12), 23–25. [in Russian language]
15. Takayama, K., Nishina, H., Iyoki, S., et al. (2011). Early detection of drought stress in tomato plants with chlorophyll fluorescence imaging. In Practical application of the speaking plant approach in a greenhouse. Proceedings of the 18th World Congress, the International Federation of Automatic Control (pp. 1785–1790).
16. Walz Photosynthesis Instruments. (n.d.). Chl fluorescence & P700 absorbance (official website). Retrieved March 16, 2025, from https://www.walz.com/products/chl_p700/overview.html
17. Opti-Sciences. (n.d.). The standard in plant stress measurement systems (official website). Retrieved March 16, 2025, from http://www.optisci.com
18. Ears Plant Photosynthesis Monitoring (EARS-P2M). (n.d.). Official website. Retrieved March 16, 2025, from https://www.earsppm.com/
19. Express diagnostics of plant condition. (2007). Selskokhozyaystvennye Vesti, (3). [Electronic resource]. Retrieved March 16, 2025, from http://agri-news.ru/zhurnal/2007/№3/2007/rastenievodstvo/ekspress-diagnostika-sostoyaniya-rastenij.html [in Russian language].
20. Kuvaldin, E. V. (2005). Photometers for measuring reflectance coefficients of natural objects in the solar radiation spectral range. Nauchnoe Priborostroenie, 15(1), 21–28. [in Russian language].
21. Kuvaldin, E. V. (2013). Remote and contact devices for plant condition diagnostics. Opticheskiy Zhurnal, 80(11), 68–77. [in Russian language].
22. Bio Instruments S.R.L. (n.d.). An independent genuine manufacturer of phyto-sensors (official website). Retrieved March 16, 2025, from https://phyto-sensor.com/about.ru
23. Stokes, V. (2004). Assessing water use in plants: An introduction and guide to methods of measurement. Scottish Forestry, 58(2), 13–19.
24. Musaev, I. A., Salmanov, M. M., & Karaev, M. K. (2005). Method for diagnosing timing and rates of vineyard irrigation (Patent No. RU2257706). Russian Federal Service for Intellectual Property. [in Russian language].
25. Golovanov, A. I. (Ed.). (2011). Land reclamation. Kolos. [in Russian language].
26. Jones, H. G., & Leinonen, I. (2003). Thermal imaging for the study of plant water relations. Journal of Agricultural Meteorology, 59, 205–217.
27. Akchurin, G. G., & Akchurin, G. G. (2012). Method for determining moisture content in plant leaves in vivo (Patent No. RU2461814). Russian Federal Service for Intellectual Property. [in Russian language].
28. Zimmermann, U., Bitter, R., Marchiori, P. E., et al. (2013). A non-invasive plant-based probe for continuous monitoring of water stress in real time: A new tool for irrigation scheduling and deeper insight into drought and salinity stress physiology. Theoretical and Experimental Plant Physiology, 25(1), 2–11.
29. Zimmermann, U., Rüger, S., Shapira, O., et al. (2010). Effects of environmental parameters and irrigation on the turgor pressure of banana plants measured using the non-invasive, online monitoring leaf patch clamp pressure probe. Plant Biology, 12(3), 424–436.
30. Sukhanova, M. V., & Bondareva, L. A. (2020). Substantiation of optimal wavelength selection for optical functional diagnostics of plants under moisture deficiency. Fundamental'nye i Prikladnye Problemy Tekhniki i Tekhnologii, (3(341)), 146–153. [in Russian language].
31. Sukhanova, M. V., & Bondareva, L. A. (2021). Measuring device for determining moisture availability level of deciduous plants. Avtomatizatsiya v Promyshlennosti, (2), 15–19. [in Russian language].
32. Bondareva, L. A., & Sukhanova, M. V. (2020). Method for assessing functional state of plants to determine their water needs (Patent No. RU2719788). Russian Federal Service for Intellectual Property. [in Russian language].
33. Bondareva, L. A., & Sukhanova, M. V. (2019). Device for determining moisture availability of deciduous plants (Patent No. RU2710009). Russian Federal Service for Intellectual Property. [in Russian language].
34. Sukhanova, M. V., Podmasterev, K. V., & Bondareva, L. A. (2020). Information-measuring system for monitoring moisture availability of plant objects. In V. I. Zhulev (Ed.), Biomedical, medical, environmental systems and robotic complexes – Biomsystems – 2020: Proceedings of the 33rd All-Russian Scientific and Technical Conference (pp. 55–58). IP Konjakhin A.V. (Book Jet). [in Russian language].