Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
10 | 08 | 2025
2025, 08 August

DOI: 10.14489/td.2025.08.pp.041-048

Uvarova A. V., Bakholdin A. V.
FEATURES OF MODELING AND IMAGE QUALITY CONTROL OF WIDE SPECTRAL RANGE OPTICAL SYSTEMS
(pp. 41-48)

Abstract. Features of modeling and control of image quality of optical systems of wide spectral range The paper discusses the features of calculation and image quality control of wide-spectrum lenses on the example of a lens f' = 21 mm, f-number F#5, 2ω = 44° with a working spectral range of 0.27…1.00 μm. The authors propose a modeling method of such systems as a set of polychromatic configurations and image quality control in a polychromatic modulation transfer function (MTF) and in a set of monochromatic MTFs for reference wavelengths. For convenience of integral assessment of image quality, an integral metric Area Ratio Squared (ARS) is proposed, which allows us to evaluate the image quality for the analyzed field point by a single numerical value. Using such a metric, it is convenient to evaluate the image quality of systems without resorting to visual analysis of multiple MTF plots, and it is also convenient to compare optical systems among themselves. An algorithm for automated calculation of this metric is presented, which can be integrated into optical calculation programs. The proposed solutions are useful for the development of tools applicable to remote and nondestructive testing, especially for luminescence analysis.

Keywords: luminescence analysis, image quality control, wide-spectrum lenses, description of optimizer functions.

A. V. Uvarova, A. V. Bakholdin (ITMO University, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Kulichkova, S. I., Golovkov, A. N., Kudinov, I. I., & Laptev, A. S. (2019). Modern flaw detection materials, equipment and automation of capillary non-destructive testing process. Kontrol'. Diagnostika, (2), 52–57. [in Russian language]. https://doi.org/10.14489/td.2019.02.pp.052-057
2. Garifullin, M. Sh. (2013). Condition monitoring of insulating paper in oil-filled electrical equipment using optical methods. Kontrol'. Diagnostika, (12), 71–74. [in Russian language].
3. Kushnir, V. M., Povazhnyi, V. V., & Berdnikov, S. V. (2014). Mineral and organic components of suspended matter according to space imagery and in situ measurements in the Sea of Azov and Kerch Strait. Morskoy Gidrofizicheskiy Zhurnal, (2), 22–31. [in Russian language]
4. Khan, A., Vibhute, A. D., Mali, Sh., et al. (2022). A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. Ecological Informatics, 69, 101678. https://doi.org/10.1016/j.ecoinf.2022.101678
5. Lipatov, A. N., Ekononov, A. P., Makarov, V. S., et al. (2014). Camera-spectrometer for studying mineralogical composition of soil. Priborostroenie, (3), 73–77. [in Russian language].
6. Bakholdin, A. V., Romanova, G. I., & Tsukanova, G. I. (2011). Theory and methods of optical systems design (Part 1). ITMO University. [in Russian language].
7. Zapryagaeva, L. A., & Sveshnikova, I. S. (2009). Calculation and design of optical systems (2nd ed., rev. and add.). MIIGAiK Publishing House. ISBN 978-5-91188-017-0. [in Russian language].
8. Simonyan, V. I., & Mikaeva, S. A. (2023). Influence of manufacturing errors of aspheric surface on modulation transfer function of thermal imaging lens when assessing contrast on collimation setup. Kontrol'. Diagnostika, 26(3(297)), 34–39. [in Russian language]. https://doi.org/10.14489/td.2023.03.pp.034-039
9. Uvarova, A., & Bakholdin, A. (2022). Analysis of image quality requirements for multispectral mirror systems. Proceedings of SPIE, 12315, 123150F.
10. Ansys Zemax OpticStudio. (n.d.). [Software]. Retrieved April 12, 2025, from https://www.ansys.com/products/optics/ansys-zemax-opticstudio
11. Grammatin, A. P., Romanova, G. E., & Balatsenko, O. N. (2013). Calculation and automation of optical systems design. ITMO University. [in Russian language].
12. Maréchal, A., & Françon, M. (1964). Structure of optical image: Diffraction theory and influence of light coherence (N. N. Gubel, Trans.; G. G. Slyusarev, Ed.). Mir. [in Russian language].
13. Sokolsky, M. N. (1989). Tolerances and quality of optical image. Mashinostroenie. [in Russian language].

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.08.pp.041-048

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования