DOI: 10.14489/td.2025.08.pp.018-027
Vinogradova A. A., Gogolinskii K. V., Gromyka D. S., Shchiptsova E. K., Melnikova A. V. POSSIBILITY EVALUATION OF NON-DESTRUCTIVE TESTING OF MECHANICAL PROPERTIES OF POLYMERIC MATERIALS BY DYNAMIC INSTRUMENTED INDENTATION METHOD (pp. 18-27)
Abstract. The possibilities of applying the dynamic instrumental indentation method for non-destructive testing of the mechanical properties of polymer-based products in their operational environments have been investigated. The study focused on gas pipeline pipes made of high-density polyethylene with varying service lifetimes. The advantages and limitations of various methods for measuring the mechanical properties of polymers were examined, highlighting the potential of dynamic instrumental indentation for rapid, sample-free testing. The results of mechanical property measurements obtained using the dynamic instrumental indentation method were compared with those obtained using a stationary nanoindenter implementing the instrumental indentation method, as well as with the results of uniaxial tensile tests.
Keywords: polyethylene pipelines, hardness, modulus of elasticity, dynamic instrumented indentation.
A. A. Vinogradova (St. Petersburg Mining University of Empress Catherine II Saint-Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
K. V. Gogolinskii (National Research Center “Kurchatov Institute” ‒ PNPI, Gatchina, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
D. S. Gromyka, E. K. Shchiptsova (St. Petersburg Mining University of Empress Catherine II Saint-Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. V. Melnikova (All-Russian Institute for Metrology (VNIIM) named after D. I. Mendeleev, Saint-Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Petrova, T. A., & Epishina, A. D. (2023). Corrosion protection of pipeline transport at mining and processing enterprises. Obogashchenie Rud, (6), 52–58. [in Russian language]. https://doi.org/10.17580/or.2023.06.09 2. Dzhemilev, E. R., Shammazov, I. A., Sidorkin, D. I., et al. (2022). Development of technology and device for repair of main pipelines with cutting out defective sections. Neftegazovoe Khozyaystvo, (10), 78–82. [in Russian language]. https://doi.org/10.24887/0028-2448-2022-10-78-82 3. Bolobov, V. I., & Popov, G. G. (2021). Methodology for testing pipeline steels for resistance to "rivulet" corrosion. Zapiski Gornogo Instituta, 252, 854–860. [in Russian language]. https://doi.org/10.31897/PMI.2021.6.7 4. Skvortsov, A. A., & Martyshkin, A. Yu. (2016). Polyethylene gas pipelines - new level of industrial safety of gas distribution systems in Russia. Vestnik Nauki i Obrazovaniya, (2(14)), 18–20. [in Russian language]. 5. Palaev, G. A., Fuming, Z., & Yifan, T. (2024). Method for assessing damage to gas distribution network pipelines based on nonlinear guided wave. International Journal of Engineering, 37(5), 852–859. https://doi.org/10.5829/ije.2024.37.05b.04 6. Shchipachev, A. M., & Dmitrieva, A. S. (2021). Application of resonant energy separation effect in natural gas reduction points to improve energy efficiency of gas distribution system. Zapiski Gornogo Instituta, 248, 253–259. [in Russian language]. https://doi.org/10.31897/PMI.2021.2.9 7. Pramanik, T. J., Rafiquzzaman, M., Karmakar, A., et al. (2024). Evaluation of mechanical properties of natural fiber based polymer composite. Bench Council Transactions on Benchmarks, Standards and Evaluations, 4(3), 100183. https://doi.org/10.1016/j.tbench.2024.100183 8. Aleksander, G. P., Yifan, T., & Fuming, Z. (2023). Predicting service life of polyethylene pipes under crack expansion using "Random Forest" method. International Journal of Engineering, 36(12), 2243–2252. https://doi.org/10.5829/ije.2023.36.12c.14 9. Vasilyeva, M., Nagornov, D., & Orlov, G. (2021). Research on dynamic and mechanical properties of magnetoactive elastomers with high permeability magnetic filling agent at complex magneto-temperature exposure. Materials, 14(9), 2376. https://doi.org/10.3390/ma14092376 10. GOST R ISO 9000-2015. (2018). Plastics. Tensile test method. Standartinform. [in Russian language]. 11. GOST 14236-81. (1992). Polymer films. Tensile test method. Izdatel'stvo standartov. [in Russian language]. 12. GOST ISO 6259-1-2023. (2024). Thermoplastics pipes. Determination of tensile properties. Part 1: General test method. Rossiyskiy institut standartizatsii. [in Russian language]. 13. GOST 25018-81. (2003). Cables, wires and cords. Methods for determining mechanical indicators of insulation and sheathing. Izdatel'stvo standartov. [in Russian language]. 14. Moskvichev, E. V., & Eremin, N. V. (2018). Experimental studies of physical and mechanical properties of cast insulation material for current conductors. Zavodskaya Laboratoriya. Diagnostika Materialov, 84(5), 55–59. [in Russian language]. https://doi.org/10.26896/1028-6861-2018-84-5-55-59 15. GOST 4647-2015. (2017). Plastics. Determination of Charpy impact strength. Standartinform. [in Russian language]. 16. GOST 4648-2014. (2016). Plastics. Static bending test method. Standartinform. [in Russian language]. 17. GOST 32618.2-2014. (2014). Plastics. Thermomechanical analysis (TMA). Part 2: Determination of linear thermal expansion coefficient and glass transition temperature. Standartinform. [in Russian language]. 18. GOST R 56712-2015. (2016). Multilayer polycarbonate panels. Specifications. Standartinform. [in Russian language]. 19. GOST R 53630-2015. (2019). Multilayer pressure pipes for water supply and heating systems. General specifications. Standartinform. [in Russian language]. 20. Wang, H., Shah, J. K., El-Hawwat, S., et al. (2024). A comprehensive review of polyethylene pipes: Failure mechanisms, performance models, inspection methods, and repair solutions. Journal of Pipeline Science and Engineering, 4(5), 100174. https://doi.org/10.1016/j.jpse.2024.100174 21. Zha, S., Lin, N., Lan, H., et al. (2023). Investigating the time-and space-dependent mechanical, physical and chemical properties of aged polyethylene gas pipes using nanoindentation tests. Journal of Materials Research and Technology, 24(1), 3383–3398. https://doi.org/10.1016/j.jmrt.2023.04.004 22. Serzhan, S. L., Skrebnev, V. I., & Malevannyi, D. V. (2023). Study of the effects of steel and polymer pipe roughness on the pressure loss in tailings slurry hydrotransport. Obogashchenie Rud, (4), 41–49. https://doi.org/10.17580/or.2023.04.08 23. GOST ISO 1167-1-2013. (2014). Thermoplastics pipes, fittings and assemblies for conveyance of fluids. Determination of resistance to internal pressure. Part 1: General method. Standartinform. [in Russian language]. 24. GOST ISO 13477-2023. (2024). Thermoplastics pipes for the conveyance of fluids. Determination of resistance to rapid crack propagation (RCP). Small-scale steady-state test (S4). Rossiyskiy institut standartizatsii. [in Russian language]. 25. GOST ISO 13479-2023. (2024). Polyolefin pipes for the conveyance of fluids. Determination of resistance to crack propagation. Test method for slow crack growth on notched pipes. FGBU "RST". [in Russian language]. 26. Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583. https://doi.org/10.1557/JMR.1992.1564 27. Galanov, B. A., Milman, Yu. V., Chugunova, S. I., et al. (2017). Application of the improved inclusion core model of the indentation process for the determination of mechanical properties of materials. Crystals, 7(3), 87. https://doi.org/10.3390/cryst7030087 28. Arora, G., & Pathak, H. (2021). Nanoindentation characterization of polymer nanocomposites for elastic and viscoelastic properties: Experimental and mathematical approach. Composites Part C: Open Access, 4, 100103. https://doi.org/10.1016/j.jcomc.2020.100103 29. Hosseinzadeh, A. R., & Mahmoudi, A. H. (2017). Determination of mechanical properties using sharp macro-indentation method and genetic algorithm. Mechanics of Materials, 114, 57–68. https://doi.org/10.1016/j.mechmat.2017.07.004 30. Zhang, T., Wang, S., & Wang, W. (2018). Improved methods to determine the elastic modulus and area reduction rate in spherical indentation tests. Materials Testing, 60(4), 355–362. https://doi.org/10.3139/120.111157 31. Milman, Yu. V., Chugunova, S. I., & Goncharova, I. V. (2006). Plasticity characteristic obtained by indentation technique for crystalline and noncrystalline materials in the wide temperature range. High Temperature Materials and Processes, 25, 39–46. https://doi.org/10.1134/S1061830924700657 32. Yang, S., Lu, W., & Ling, X. (2020). Spherical indentation creep characteristics and local deformation analysis of 310S stainless steel. Engineering Failure Analysis, 118, 104946. https://doi.org/10.1016/j.engfailanal.2020.104946 33. Huang, L., Zhong, J., Chen, G., et al. (2021). Methodology to evaluate strength properties of steel by single instrumented indentation test. The Journal of Strain Analysis for Engineering Design, 56(6), 404–416. https://doi.org/10.1177/03093247211014761 34. Yu, F., Fung, J., Yao, S., et al. (2024). Rapid evaluation of trade-offs between strength and impact toughness of wheel steels by instrumented spherical indentation test. Engineering Fracture Mechanics, 302, 110071. https://doi.org/10.1016/j.engfracmech.2024.110071 35. Zha, S., Lan, H., Lin, N., & Meng, T. (2023). Degradation and characterization methods for polyethylene gas pipes after natural and accelerated aging. Polymer Degradation and Stability, 208, 110247. https://doi.org/10.1016/j.polymdegradstab.2022.110247 36. Shaheer, M., Troughton, M., Khamsehnezhad, A., & Song, J. H. (2017). A study of the micro-mechanical properties of butt fusion-welded joints in HDPE pipes using the nanoindentation technique. Welding in the World, 61(4), 819–831. https://doi.org/10.1007/s40194-017-0454-9 37. Chen, S., Lin, R., Lai, H. S., & Duan, X. H. (2022). Study on the creep properties of butt fusion-welded joints of HDPE pipes using the nanoindentation test. Welding in the World, 66, 135–144. https://doi.org/10.1007/s40194-021-01186-0 38. Yamilev, M. Z., Pshenin, V. V., Matveev, D. S., et al. (2022). Use of compact inspection devices for monitoring technical condition of pipelines in protective casings. Neftegazovoe Khozyaystvo, (2), 106–111. [in Russian language]. https://doi.org/10.24887/0028-2448-2022-2-106-110 39. Gogolinskii, K. V., Syasko, V. A., Umanskii, A., et al. (2019). Mechanical properties measurements with portable hardness testers: advantages, limitations, prospects. Journal of Physics: Conference Series, 1384(1), 012012. https://doi.org/10.1088/1742-6596/1384/1/012012 40. GOST 24621-2015. (2016). Plastics and ebonite. Determination of indentation hardness by means of durometer (Shore hardness). Standartinform. [in Russian language]. 41. GOST R 8.969-2019. (2019). State system for ensuring the uniformity of measurements. Metals and alloys. Leeb hardness test. Part 1: Test method. Standartinform. [in Russian language]. 42. Umanskii, A., Gogolinskii, K. V., Syasko, V. A., & Golev, A. (2022). Modification of the Leeb impact device for measuring hardness by the dynamic instrumented indentation method. Inventions, 7(1), 29–39. https://doi.org/10.3390/inventions7010029 43. Johnson, L. (2013). Dynamic effects and impact. In Contact mechanics (pp. 187–202). Cambridge University Press. https://doi.org/10.1017/CBO9781139171731.012 44. Lee, A., & Komvopoulos, K. (2018). Dynamic spherical indentation of elastic-plastic solids. International Journal of Solids and Structures, 146, 180–191. https://doi.org/10.1016/j.ijsolstr.2018.03.028 45. Vriend, N. M., & Kren, A. P. (2004). Determination of the viscoelastic properties of elastomeric materials by the dynamic indentation method. Polymer Testing, 23(4), 369–375. https://doi.org/10.1016/j.polymertesting.2003.10.006 46. Koruk, H., Koc, H. O., Yurdaer, S. B., et al. (2024). A new approach for measuring viscoelastic properties of soft materials using the dynamic response of a spherical object placed at the sample interface. Experimental Mechanics, 64(1), 21–32. https://doi.org/10.1007/s11340-023-01004-2 47. Rapp, T., Jacobs, G., Berroth, J., & Guenther, J. (2022). Determining dynamic properties of elastomer-dampers by means of impact testing. Experimental Mechanics, 62(5), 823–836. https://doi.org/10.1007/s11340-022-00832-y 48. Vinogradova, A. A., Gogolinskii, K. V., Umanskii, A., & Alekhnovich, V. (2022). Method of the mechanical properties evaluation of polyethylene gas pipelines with portable hardness testers. Inventions, 7(4), 125. https://doi.org/10.3390/inventions7040125 49. GOST ISO 6259-3-2023. (2024). Thermoplastics pipes. Determination of tensile properties. Part 3: Polyolefin pipes. FGBU "RST". [in Russian language]. 50. GOST R 8.748-2011. (2013). Metals and alloys. Measurement of hardness and other material characteristics by instrumented indentation. Part 1: Test method. Standartinform. [in Russian language]. 51. Rudnitsky, V. A., Kren, A. P., & Lantsman, G. A. (2016). Correlation between dynamic and static hardness of metals. Ves. Nats. akad. navuk Belarusi. Ser. fiz.-tekhn. navuk, (4), 16–22. [in Russian language]. 52. GOST R 56474-2015. (2019). Space systems. Non-destructive testing of physical and mechanical properties of materials and coatings of space equipment by dynamic indentation method. General requirements. Standartinform. [in Russian language]. 53. Useinov, A., Reshetov, V., Maslennikov, I., et al. (2016). Study of thin coating properties in dynamic mechanical analysis mode using "NanoScan-4D" scanning nanoindenter. Nanoindustriya, (1(63)), 80–87. [in Russian language]. https://doi.org/10.22184/1993-8578.2016.63.1.80.87
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2018.01.pp.003-012
and fill out the form
|