Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
16 | 09 | 2025
2025, 09 September

DOI: 10.14489/td.2025.09.pp.035-042

Andrianov I. K., Novgorodov N. A., Chepurnova E. K.
DEVELOPMENT OF A MODEL FOR THE LOCATION OF INCLINED CAVITIES FOR A SYSTEM FOR REGISTRATION OF CRACKS IN A GAS TURBINE ENGINE BLADE
(pp. 35-42)

Abstract. The study is devoted to the problem of diagnosing damage in the blades of aircraft gas turbine engines in the engine operating mode. The study built a model that allows calculating the position of inclined cavities for installing capsules containing ionizing substances in the body of a turbine blade, which are used to detect cracks. When deriving the constitutive relationships for calculating the coordinates of the centers of the holes, angles of inclination, the provisions of vector algebra and analytical geometry were used. The results of the study can find practical application at the stage of designing gas turbine engine blades with a control system in non-stationary conditions.

Keywords: turbine blade, shell, internal cavity, crack detection.

 I. K. Andrianov, N. A. Novgorodov, E. K. Chepurnova (Komsomolsk-na-Amure State University, Komsomolsk-na-Amure, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Tolstikhin, Yu. Yu., Blinov, F. V., Zorin, D. V., & Boyko, O. V. (2020). Method for detecting cracks in gas turbine engine blades (Patent No. 2732469) [in Russian language].
2. Bakhir, A. O. (2021). Monitoring turbine blade defects during operation. Innovatsionnaya Nauka, (5), 32–33. [in Russian language]
3. Porter, A. M., Vasilchuk, M. V., & Galitsky, A. A. (2014). Method for detecting cracks in rotating parts (Patent No. 2517786) [in Russian language].
4. Klyuev, S. V. (2010). Study of signals from crack-type defects in combined eddy current magnetic testing. Informatsionnye Sistemy i Tekhnologii, 2(58), 26–33. [in Russian language]
5. Shutov, A. N., Bazhenov, B. N., Chumakov, A. G., et al. (2004). Method of active thermal nondestructive testing of objects (Patent No. 2235993) [in Russian language].
6. Bekarevich, A. A., Budadin, O. N., & Chumakov, A. G. (2012). Automated thermal monitoring method for turbine blades. Kontrol'. Diagnostika, (10), 27–33. [in Russian language]
7. Vinogradov, V. Yu. (2013). Monitoring the technical condition of aircraft gas turbine engines using acoustic parameters measured at the engine nozzle. Kontrol'. Diagnostika, (3), 53–57. [in Russian language]
8. Safina, G. F. (2014). Acoustic diagnostics of turbine blade characteristics connected by a shroud. Kontrol'. Diagnostika, (7), 64–72. [in Russian language]. https://doi.org/10.14489/td.2014.07.pp.064-072
9. Pyankov, I. N., Trofimov, V. N., Pyankov, V. A., & Karabutov, A. A. (2020). Acoustic methods for testing gas turbine engine blades. In Aerospace technology, high technologies and innovations - 2020: Proceedings of the XXI All-Russian Scientific and Technical Conference, Perm, November 19-21, 2020 (Vol. 2, pp. 90–93) [in Russian language].
10. Mevissen, F., & Meo, M. (2020). A nonlinear ultrasonic modulation method for crack detection in turbine blades. Aerospace, 7(6), 72. https://doi.org/10.3390/aerospace7060072
11. Mevissen, F., & Meo, M. (2022). Ultrasonically stimulated thermography for crack detection of turbine blades. Infrared Physics & Technology, 122, 104061. https://doi.org/10.1016/j.infrared.2022.104061
12. Artamonov, M. A., Starshinov, D. S., & Pakhomov, N. A. (2024). Dynamic and fractographic analysis to determine the cause of fatigue failure of a low-pressure gas turbine engine blade. In Klimov Readings – 2024: Promising directions for aircraft engine development: Proceedings of the scientific and technical conference, St. Petersburg, November 14–16, 2024 (pp. 249–255). Skifiya-print. [in Russian language]
13. Grinkrug, M. S., & Popovsky, A. V. (2001). Method for diagnosing incipient defects (Patent No. 2168724) [in Russian language].
14. Grinkrug, M. S., Andrianov, I. K., Kara, B. M., & Tkacheva, Yu. I. (2024). System for registering cracks in gas turbine engine blades using ionizing substance under non-stationary conditions. Kontrol'. Diagnostika, 27(10), 59–64. [in Russian language]. https://doi.org/10.14489/td.2024.10.pp.059-064
15. Mironov, A. N., Novgorodov, N. A., & Tkacheva, Yu. I. (2025). Physical and mathematical basis for determining the position of capsules with active substance in gas turbine engine blades. In Science, innovations and technologies: From ideas to implementation: Proceedings of the All-Russian scientific-practical conference of young scientists, Komsomolsk-on-Amur, December 11–12, 2024 (Pt. 1, pp. 349–352). Komsomolsk-on-Amur State University. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.09.pp.035-042

and fill out the  form  

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования