Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
20 | 10 | 2025
2025, 10 October

DOI: 10.14489/td.2025.10.pp.025-040

Kozochkin M. P., Fedorov S. V., Migranov M. Sh., Ostrikov E. A., Gusev A. S.
THE RELATIONSHIP OF ACOUSTIC EMISSION SIGNAL PARAMETERS WITH THE FEATURES OF PROCESSING MATERIALS WITH CONCENTRATED ENERGY FLOWS
(pp. 25-40)

Abstract. Equipping equipment with various sensors allows for a deeper understanding of ongoing processes, the understanding of which is difficult due to their high speed, the small size of the core of these processes and the difficulties of direct observation. Processing with concentrated energy flows (CEF) is fully related to such processes. CEF processing occurs in such small volumes that even an experienced operator finds it difficult to navigate what is happening. Such technologies include laser, electrical discharge, electron beam processing and a number of similar technologies.Among all the problems that arise when creating automated equipment, monitoring the processing process itself remains the most difficult task. This is due to the fact that it is almost impossible to place sensors in the processing zone itself, and indirect monitoring methods are associated with the influence of various random factors and a decrease in the information content of signals when sensors are located remotely from the core of the technological process.Analysis of acoustic emission (AE) signals as a non-destructive testing method has long won a strong place in industry for diagnosing the condition of bearing assemblies, gears and other rotor mechanisms. The literature provides much more modest information on the use of AE for monitoring various technological processes, which is associated with the difficulties of their analysis. However, AE signals accompany not only blade processing, but are also observed during phase transformations in materials, during crystallization and melting of matter, during the formation of a new phase in supersaturated solutions, and during plastic deformation of materials. Works on the study of AE signals during plastic deformation of materials, accompanied by the development of defects in their structure, are directly related to the cutting process. However, there are still few publications in the literature devoted to the study of the relationships between the parameters of AE signals and the features of technological processes of processing with concentrated energy flows. The purpose of this work is to identify the parameters of AE signals that reflect the features of the impact of laser pulses on various materials, and to study the possibilities of using these parameters as a tool for cognition

Keywords: diagnostics, acoustic emission, laser processing, plasma torch, self-focusing, spectrum, frequency range.

M. P. Kozochkin, S. V. Fedorov, M. Sh. Migranov, E. A. Ostrikov, A. S. Gusev (Moscow State Technological University “Stankin”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Genkin, M. D., & Sokolova, A. G. (1987). Vibroacoustic diagnostics of machines and mechanisms. Mashinostroenie. [in Russian language]
2. Balitsky, F. Ya., Ivanova, M. A., Sokolova, A. G., & Khomyakov, E. I. (1984). Vibroacoustic diagnostics of incipient defects. Nauka. [in Russian language]
3. Baidullaeva, A., Veleshchuk, V. P., Vlasenko, A. I., et al. (2008). Influence of melting process on acoustic response of CdTe and GaAs compounds under pulsed laser irradiation. Fizika i Tekhnika Poluprovodnikov, 42(3), 286–290. [in Russian language]
4. Smirnov, A. N. (2001). Generation of acoustic oscillations in chemical reactions and physico-chemical processes. Rossiiskii Khimicheskii Zhurnal, 45, 29–34. [in Russian language]
5. Kozochkin, M. P., Volosova, M. A., & Allenov, D. G. (2016). Effect of wear of tool cutting edge on detail surface layer deformation and parameters of vibro-acoustic signals. Materials Science Forum, 876, 50–58.
6. Kozochkin, M. P., & Porvatov, A. N. (2015). Uncertainty estimation in solving multiparameter diagnostic problems. Izmeritel'naya Tekhnika, (2), 41–45. [in Russian language]
7. Kozochkin, M. P., & Allenov, D. G. (2015). Study of the influence of tool cutting edge wear on surface layer deformation of parts. Vestnik MGTU “STANKIN”, (4), 22–29. [in Russian language]
8. Grigoriev, S. N., Kozochkin, M. P., Volosova, M. A., et al. (2021). Vibroacoustic monitoring features of radiation beam technologies by the case study of laser, electrical discharge, and electron-beam machining. Metals, 11(7), 17–42.
9. Grigoryants, A. G. (1989). Fundamentals of laser material processing. Mashinostroenie. [in Russian language]
10. Losev, V. F., Morozova, E. Yu., & Tsipilev, V. P. (2011). Physical foundations of laser material processing. Izd-vo TPU. [in Russian language]
11. Steen, W. M., & Mazumder, J. (2010). Laser material processing (4th ed.). Springer.
12. Dowden, J. (Ed.). (2009). The theory of laser materials processing. Springer.
13. Yilbas, B. S., & Shuja, S. Z. (1999). Laser short-pulse heating of surfaces. Journal of Physics D: Applied Physics, 32(16), 1947–1954.
14. Grigoriev, S. N., Kozochkin, M. P., Volosova, M. A., & Okunkova, A. A. (2024). Monitoring of vibroacoustic signals during laser processing of metal-ceramic hard alloy. Kontrol. Diagnostika, 27(12), 33–41. [in Russian language]. https://doi.org/10.14489/td.2024.12.pp.033-041
15. Grigoriev, S. N., Kozochkin, M. P., Porvatov, A. N., et al. (2024). Acoustic features of the impact of laser pulses on metal-ceramic carbide alloy surface. Sensors, 24(16), 5160. https://doi.org/10.3390/s24165160
16. Libenson, M. N., Yakovlev, E. B., & Shandybi-na, G. D. (2014). Interaction of laser radiation with matter (power optics). Part II. Laser heating and destruction of materials. NIU ITMO. [in Russian language]
17. Korenblum, M. V., Levit, M. L., & Livshits, A. L. (1977). Adaptive control of electrical discharge machines. NIINmash. [in Russian language]
18. Gutkin, B. G. (1971). Automation of electrical discharge machines. Mashinostroenie. [in Russian language]
19. Nemilov, E. F. (1989). Handbook on electrical discharge machining of materials. Mashinostroenie. [in Russian language]
20. Artamonov, B. A., & Volkov, Yu. S. (1991). Analysis of models of electrochemical and electrical discharge machining. Part II. Models of electrical discharge machining processes. Wire cutting. VNIIPI. [in Russian language]
21. Mahardika, M., Mitsui, K., & Taha, Z. (2008). Acoustic emission signals in the micro-EDM of PCD. Materials Research, 37, 1181–1186.
22. Golberg, S. M., Tribelsky, M. I., & Khokhlov, V. A. (1983). Self-oscillations during laser evaporation of dielectrics. Poverkhnost. Fizika, Khimiya, Mekhanika, (11), 22–27. [in Russian language]
23. Sukhorukov, A. P. (1994). Self-focusing of light. In Physical encyclopedia (Vol. 4, pp. 415–417). BRE. [in Russian language]
24. Kosareva, O. G., & Panov, N. A. (2021). Physics of laser filaments. Izd-vo MGU. [in Russian language]
25. Lariontsev, E. G., & Serkin, V. N. (1975). On the possibility of using self-focusing to increase contrast and narrow ultrashort light pulses. Kvantovaya Elektronika, 2(7), 1481–1488. [in Russian language]
26. Erokhin, A. I., Morachevsky, N. I., & Faizullov, F. S. (1978). Thermal self-focusing of a laser beam with spatial and temporal inhomogeneity. Kvantovaya Elektronika, 5(5), 1119–1123. [in Russian language]
27. Dergachev, A. A., Ionin, A. A., Kandidov, V. P., et al. (2014). Plasma channels during filamentation in air of femtosecond laser radiation with wavefront astigmatism. Kvantovaya Elektronika, 44(12), 1085–1090. [in Russian language]
28. Grigoriev, S. N., Kozochkin, M. P., Porvatov, A. N., et al. (2023). Changes in the parameters of acoustic signals characteristic of various metalworking processes and prospects for their use in monitoring. Applied Sciences, 14, 367. https://doi.org/10.3390/app14010367
29. Grigoriev, S. N., Kozochkin, M. P., & Masterenko, D. A. (2024). Acoustic monitoring of technological processes of material processing by concentrated energy flows. Izdatel'skoe reshenie. [in Russian language]
30. Letyagin, I. Yu., & Fedoseeva, E. M. (2016). Assessment of through penetration during laser welding based on plasma plume registration. Vestnik PNIPU. Mashinostroenie, Materialovedenie, 18(1), 84–100. [in Russian language]. https://doi.org/10.15593/2224-9877/2016.1.06
31. Krishtal, M. A., Zhukov, A. A., & Kokora, A. N. (1973). Structure and properties of alloys processed by laser radiation. Metallurgiya. [in Russian language]
32. Grigoryants, A. G. (1989). Fundamentals of laser material processing. Mashinostroenie. [in Russian language]
33. Vedenov, A. A., & Gladush, G. G. (1985). Physical processes during laser material processing. Energoatomizdat. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.10.pp.025-040

and fill out the  form  

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования