|
DOI: 10.14489/td.2026.01.pp.004-015
Barsuk V. E., Seryeznov A. N., Stepanova L. N., Kabanov S. I., Ramazanov I. S., Chernova V. V. LOCATION OF ACOUSTIC EMISSION SIGNALS ON BOARD AIRCRAFT ON THE GROUND AND IN FLIGHT (pp. 4-15)
Abstract. The results of acoustic emission (AE) signal location using piezo antennas installed aboard one ground-based aircraft and another aircraft conducting flight tests are presented. The AE signal location technique was tested in the first aircraft. Two piezo antennas, each consisting of four piezoelectric acoustic emission (AE) transducers, were positioned in a composite area. The structure in the area of each piezo antenna sensor was struck five times with a twisted wire. The piezo antenna sensors were sequentially switched to emission mode, and the signal transit time and average speed of sound propagating between them were determined. The AE signals were then located. The experimental location results were compared with the actual coordinates of the sensors operating in emission mode. Location errors were calculated by enumerating the values of the sound speeds Cx and Cy. Once the minimum error was achieved, the calculated acoustic signal propagation velocities Cx and Cy were used for practical tests to identify defects within zones bounded by piezo antennas on the first aircraft. The second aircraft was equipped with a single piezo antenna consisting of four acoustic antennas and a four-channel AE system unit. AE signals from the engines were recorded during flight, taxiing to the runway, takeoff, flight, descent, landing, and taxiing to the parking area. Maximum AE signal activity was recorded during takeoff and landing. During the flight from the control zone, 46 AE signals were recorded, of which the amplitudes of six signals exceeded the selection threshold.
Keywords: acoustic emission, signal, calibration, composite, error, aircraft, flight.
V. E. Barsuk (FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. N. Seryeznov (FAI “Central Aerohydrodynamic Institute named after N. E. Zhukovsky” (FAI TsAGI), Moscow region, Zhukovsky, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
L. N. Stepanova, S. I. Kabanov, I. S. Ramazanov (FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. V. Chernova (The Siberian Transport University, Novosibirsk, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Carboni, M., Gianneo, A., & Giglio, M. (2013). A low frequency lamb-waves based structural health monitoring of aeronautical carbon fiber reinforced polymer composite. In 12th International Conference of the Slovenian Society for Non-Destructive Testing: Application of Contemporary Non-Destructive Testing in Engineering, ICNDT 2013 – Conference Proceedings (pp. 497–516). 2. Sause, M. R. G. (2018). On use of signal features for acoustic emission source identification in fibre reinforced composites. Journal of Acoustic Emission, 35, 125–136. 3. Remshev, E. Y., Sobolev, I. A., Olekhver, A. I., & Lukichev, V. Y. (2021). Development of an on-board device for non-destructive testing of wings and landing gear of an aircraft of acoustic emission. NOISE Theory and Practice, (2), 65–82. 4. Feygenbaum, Yu. M., Mikolaychuk, Yu. A., Metelkin, E. S., & Batov, G. P. (2015). The place and role of nondestructive testing in the system of continuing airworthiness of composite designs. Nauchnyi Vestnik GosNII GA, (9), 71–82. [in Russian language]. 5. Makhsidov, V. V., Kasharina, L. A., Smirnov, O. I., & Yakovlev, N. O. (2019). Fiber optic structural health monitoring system for aviation constructions made with use of polymeric composite materials. Konstruktsii iz Kompozitsionnykh Materialov, (1), 65–73. [in Russian language]. 6. Lehmann, M., Bueter, A., & Schwarzaupt, O. (2018). Structural health monitoring of composite aeroSpace structures with acoustic emission. Journal of Acoustic Emission, 35, 172–183. 7. Aljets, D. (2011). Acoustic emission source location in composite aircraft structures using modal analysis [Doctoral dissertation, University of Glamorgan]. 8. Zhang, F., Wu, G., Guo, B., & Wang, Z. (2001). Statistical model and analysis of AE data from aircraft. Insight, 8, 531–536. 9. Gajdachuk, V. E., & Kovalenko, V. A. (2012). Levels of defects of structure in designs from the polymeric composites arising in the course of their production. Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, (6), 5–12. [in Russian language]. 10. Sereznov, A. N., Stepanova, L. N., Kabanov, S. I., et al. (2024). Acoustic emission testing of aircraft materials and structures made of carbon fiber reinforced plastics. Nauka. [in Russian language]. 11. Sause, M. G. R. (2013). Acoustic emission signal propagation in damaged composite structures. Journal of Acoustic Emission, 31, 1–18. 12. Sikdar, S., Mirgal, P., Banerjee, S., & Ostachowicz, W. (2019). Damage-induced acoustic emission source monitoring in a honeycomb sandwich composite structure. Composites Part B: Engineering, 158(3), 179–188. 13. Kahandawa, G. C., Epaachchi, J., & Wang, H. (2012). Use of FBG sensors for SHM in aerospace structures. Photonic Sensors, 2(3), 203–214. 14. Stepanova, L. N., Ramazanov, I. S., Kabanov, S. I., & Chernova, V. V. (2025). Acoustic emission location of defects by analytical and tabular methods during static loading the composite caisson of the aircraft wing. Russian Journal of Nondestructive Testing, 61(5), 528–537. 15. Kareev, A. E., Stepanova, L. N., & Tenitilov, E. S. (2010). The influence of the coordinate errors of setting sensors of a piezoelectric antenna on the accuracy of localizing sources of acoustic-emission signals. Russian Journal of Nondestructive Testing, 46(11), 803–809. 16. Sereznov, A. N., Stepanova, L. N., Muravyov, V. V., et al. (2000). Acoustic emission diagnostics of structures. Radio i Svyaz'. [in Russian language]. 17. Sereznov, A. N., Stepanova, L. N., Muravyov, V. V., et al. (2004). Diagnostics of transport objects using the acoustic emission method. Mashinostroenie. [in Russian language]. 18. Sereznov, A. N., Stepanova, L. N., Kabanov, S. I., Chernova, V. V., & Kuznetsov, A. B. (2024). Acoustic emission control of defects in the aircraft wing attachment zone in flight. Kontrol'. Diagnostika, 27(6), 18–27. [in Russian language]. https://doi.org/10.14489/td.2024.06.pp.018-027
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2026.01.pp.004-015
and fill out the form
|