Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
17 | 01 | 2026
2026, 01 January

DOI: 10.14489/td.2026.01.pp.016-023

Budadin O. N., Kaledin Val. O., Aniskovich V. A., Kozelskaya S. O., Razin A. F., Ulyanov A. D.
METHODOLOGICAL APPROACHES TO DETERMINING THE CHARACTERISTICS OF EQUIPMENT FOR RECORDING INTERNAL STRESS CONCENTRATORS IN COMPOSITE MATERIALS BASED ON THE ANALYSIS OF DYNAMIC TEMPERATURE FIELDS
(pp. 16-23)

Abstract. One of the problems of assessing the quality and reliability of composite structures (CM) is the need to detect, localize and identify internal stresses that affect the reliability of products both at the stage of their manufacture and during operation. Currently, traditional methods of non-destructive testing, as a rule, identify and identify defects such as violations of the internal continuity of the material, having an interface between the media. The proposed article suggests an approach to detecting "implicit" defects (microcracks in the binder, fiber breaks, etc.) that occur, as a rule, when force loads are applied to the structure during testing or operation, i.e. before the appearance of discontinuity of the material. This will allow, firstly, to determine the places of stress concentration - potentially dangerous areas where damage is possible, and secondly, to determine the places of destruction of products without bringing the products themselves to destruction. This article presents the results of research and the development of methodological approaches to determining the parameters of advanced and informative thermal control equipment using the example of detecting internal stress concentrators based on modeling thermal processes in a material and analyzing one type of radiation, dynamic infrared fields.  Examples of equipment parameters are given based on the calculation of dynamic temperature fields in a material when a power load is applied due to the manifestation of internal stress concentrators and the choice of the most acceptable real monitoring equipment.

Keywords: composite materials, stress concentrators, composite structures, infrared radiation, thermal processes, implicit defects, force load, defect detection.

O. N. Budadin (AO “Central Research Institute of Special Mechanical Engineering”) (JSC “TSNIISM”), Khotkovo, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Val. O. Kaledin (Kemerovo State University (FSBEI HE “KemGU”), Kemerovo, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. A. Aniskovich, S. O. Kozelskaya, A. F. Razin (AO “Central Research Institute of Special Mechanical Engineering”) (JSC “TSNIISM”), Khotkovo, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. D. Ulyanov (Kemerovo State University (FSBEI HE “KemGU”), Kemerovo, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Vasiliev, V. V., Razin, A. F., & Azarov, A. V. (2023). Composite mesh structures – design, calculation and manufacturing. Innovatsionnoe Mashinostroenie. [in Russian language].
2. Semerikova, M. A. (2012). Mathematical modeling of brittle material fracture in a coupled problem of thermoelasticity. Vestnik MGTU im. N. E. Bauman. Ser. Estestvennye Nauki, 187–196. [in Russian language].
3. Tamuzh, V. P., & Kuksenko, V. S. (1978). Micromechanics of fracture of polymeric materials. Zinatne. [in Russian language].
4. Protasov, V. D., & Ermolenko, A. F. (1992). Fracture mechanics of composites: some results and prospects. In Mekhanika konstruktsii iz kompozitsionnykh materialov: sb. nauch. statei (pp. 304–322). Mashinostroenie. [in Russian language].
5. Ivanov, V. V., Chernikova, T. M., & Ardeev, K. V. (2002). The method of electromagnetic emission as an effective means for studying the kinetics of material fracture. Vestn. KuzGTU, (6), 5–9. [in Russian language].
6. Chernikova, T. M., Ivanov, V. V., & Mikhailova, E. A. (2011). Electromagnetic radiation spectra of individual cracks in the near field. Polzunovskii Vestnik, (3/1), 103–106. [in Russian language].
7. Budadin, O. N., Potapov, A. I., Kolganov, V. I., et al. (2002). Thermal non-destructive testing of products. Nauka. [in Russian language].
8. Vavilov, V. P. (2013). Infrared thermography and thermal control (2nd ed.). ID "Spektr". [in Russian language]
9. Pergam. (n.d.). Pergam Spectrum: Russian high-precision thermal imager [in Russian language]. Retrieved December 11, 2025, from https://www.pergam.ru/catalog/thermal_imagers/scientific_cooled/pergam-spectr.htm?ysclid=miz6k35emo621571457

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2026.01.pp.016-023

and fill out the  form  

 

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования