|
DOI: 10.14489/td.2026.01.pp.042-050
Makarov G. V., Myshlyaev L. P., Mikhailenko I. A., Popov A. S. CONTROL AND MANAGEMENT OF MINERAL ENRICHMENT QUALITY USING ADAPTIVE REPRESENTATIVE SITUATIONS (pp. 42-50)
Abstract. The problem of improving the quality of mineral enrichment is considered using coal as an example. The lack of operational control over the characteristics of raw materials and output concentrate does not allow the use of traditional management approaches, including predictive systems, due to the significant delay in the results of laboratory coal analyses. The paper proposes the use of a decision support system for selecting and optimizing enrichment modes based on a natural-model approach and typical situations, as well as their improvement using methods for predicting the characteristics of input raw materials and disturbances reduced to outputs in the existing management system.
Keywords: coal beneficiation, coal quality, decision support systems, expert systems, natural model approach.
G. V. Makarov (Siberian State Industrial University, Novokuznetsk, Russia, LLC “Research Center for Control Systems”, Novokuznetsk, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
L. P. Myshlyaev (LLC “Research Center for Control Systems”, Novokuznetsk, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
I. A. Mikhailenko (Siberian State Industrial University, Novokuznetsk, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. S. Popov (Siberian State Industrial University, Novokuznetsk, Russia, LLC “Research Center for Control Systems”, Novokuznetsk, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Emelyanov, S. V., Korovin, S. K., Myshlyaev, L. P., et al. (2008). Theory and practice of forecasting in control systems. Rossiyskiye Universitety; Kuzbassvuzizdat – ASTSh. [in Russian language]. 2. Evtushenko, V. F., Ivushkin, A. A., Venger, K. G., et al. (2019). On the full-scale model approach and similarity theory as applied to control systems. In S. M. Kulakov & L. P. Myshlyaev (Eds.), Systems of automation in education, science and production. AS'2017: Proceedings of the XII All-Russian scientific-practical conference (with international participation) (pp. 21–24). SGIU. [in Russian language]. 3. Trofimov, V. B., & Temkin, I. O. (2020). Expert systems in automated control systems. Infra-Inzheneriya. [in Russian language]. 4. Krasovsky, A. A. (1979). Optimal control by means of a physical predictive model. Avtomatika i Telemekhanika, (2), 156–162. [in Russian language]. 5. Myshlyaev, L. P., Evtushenko, V. F., Burkov, V. N., et al. (2016). Development of control systems with predictive physical models. Vestnik Sibirskogo Gosudarstvennogo Industrial'nogo Universiteta, (3), 47–55. [in Russian language]. 6. Mochalov, S. P., Ivushkin, A. A., Myshlyaev, L. P., et al. (2012). Automated experimental-laboratory energy-technological complex. Ugol', (10), 49–53. [in Russian language]. 7. Pavlov, A. V., Spirin, N. A., Beginyuk, V. A., et al. (2022). Analysis of the slag regime of blast furnace smelting using model decision support systems. Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya, 65(6), 413–420. [in Russian language]. https://doi.org/10.17073/0368-0797-2022-6-413-420 8. Pavlov, A. V., Spirin, N. A., Lavrov, V. V., et al. (2022). Assessment of the adequacy of the model for calculating the composition and properties of the final slag in a blast furnace. Metallurg, (5), 92–96. [in Russian language]. https://doi.org/10.52351/00260827_2022_05_92 9. TsNIETIugol'. (1984). Metodika dolgosrochnogo prognozirovaniya kachestva (zol'nosti) ugol'noy produktsii [in Russian language]. 10. Zagidulin, I. R., Salamatin, A. S., Lyakhovets, M. V. (2022). Simulation modeling of typical enrichment processes. Naukoyemkiye Tekhnologii Razrabotki i Ispol'zovaniya Mineral'nykh Resursov, (8), 222–227. [in Russian language]. 11. Lyakhovets, M. V., Makarov, G. V., Salamatin, A. S., & Shipunov, M. V. (2020). Estimation of pre-emergency states of technological equipment and control and measuring instruments. Promyshlennye ASU i Kontrollery, (3), 16–24. [in Russian language]. https://doi.org/10.25791/asu.3.2020.1166 12. Yastrebov, A. P. (2024). Application of predictive control to improve the quality of production processes. Kontrol'. Diagnostika, 27(3), 58–62. [in Russian language]. https://doi.org/10.14489/td.2024.03.pp.058-062 13. Kulakov, S. M., Trofimov, V. B., Dobrynin, A. S., & Taraborina, E. N. (2017). A case-based approach to the formation of control programs for cyclic action objects. In Systems of automation in education, science and production AS`2017: Proceedings of the XI All-Russian scientific-practical conference (with international participation) (pp. 11–19). SibGIU. [in Russian language]
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2026.01.pp.042-050
and fill out the form
|