|
DOI: 10.14489/td.2026.01.pp.058-064
Bezuglyi A. M., Chetvergov M. V., Bakholdin A. V. INFLUENCE OF TEMPERATURE CONDITIONS DURING THE MANUFACTURING OF PHOTODETECTORS WITH ADJUSTED CURVED IMAGE SURFACE (pp. 58-64)
Abstract. Subject of study: technological methods for manufacturing photodetectors with an adjusted surface curvature, the influence of temperature conditions on the form of curved sensor surface, and the interrelation of geometric parameters of the curved surface. Aim of study: investigate the effect of temperature conditions during the manufacturing of a multi-element semiconductor radiation detector with a specified curvature of the receiving surface. The research is based on applying of the temperature treatment method to silicon wafers of photodetectors. Surface bending control was carried out applying a laser triangulation measuring system. Theoretical calculations were performed using equations that take into account the physical, mechanical properties of materials, and geometric parameters of the photodetector. The results of experimental measurements have been processed using statistical methods and confirmed through simulation modeling. The study found that, under definite temperature conditions, it is possible to increase the initial curvature of the receiver's surface A method for manufacturing sensor with adjusted curved image surface has been developed, which includes shape correction through repeated thermal treatment process. Dependencies between the geometric parameters of curved surfaces have been identified, which are now used by developers of optical systems and photodetectors. The applying of photodetector with adjusted curved image surface makes it possible to improve the characteristics of the optical system (field of view), ensure the correction of image curvature and reduce the size and weight of lenses.
Keywords: photodetector, curved image surface, bending of the image surface, image surface shape control process.
A. M. Bezuglyi (ITMO University, Saint-Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
M. V. Chetvergov (Stock Company “Research and Production Enterprise “ELAR”, Saint-Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. V. Bakholdin (CAO ITMO University, Saint-Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Muslimov, E., Hugot, E., Lombardo, S., Vives, S., Ferrari, M., & Gaschet, C. (2018). Curved detectors for wide field imaging systems: impact on tolerance analysis. In P. Schelkens, T. Ebrahimi, & G. Cristóbal (Eds.), Proceedings of SPIE 10679, Optics, Photonics, and Digital Technologies for Imaging Applications V. 106790W. https://doi.org/10.1117/12.2305923 2. Guenter, B., Joshi, N., Stoakley, R., Keefe, A., Geary, K., & Tilton, R. (2017). Highly curved image sensors: a practical approach for improved optical performance. Optics Express, 25(12), 13010–13023. https://doi.org/10.1364/OE.25.013010 3. Andreev, L. N., Ezhova, V. V., Tsyganok, E. A., & Kozhina, A. D. (2021). Compensators of image surface curvature and astigmatism. Opticheskii Zhurnal, 88(4), 12–16. [in Russian language]. https://doi.org/10.17586/1023-5086-2021-88-04-12-16 4. Andreev, L. N., Tsyganok, E. A., Ezhova, V. V., & Kozhina, A. D. (2022). Two-component compensators of field aberrations of optical systems. Opticheskii Zhurnal, 89(6), 25–32. [in Russian language]. https://doi.org/10.17586/1023-5086-2022-89-06-25-32 5. Chambion, B., Gaschet, C., Behaghel, T., Gétin, S., & Jahn, W. (2018). Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization. Proceedings of SPIE 10539, Photonics Europe: Micro-Optics 2018. 105391H. https://doi.org/10.1117/12.2291472 6. Iwert, O., & Delabre, B. (2010). The challenge of highly curved monolithic imaging detectors. In A. D. Holland & J. W. Beletic (Eds.), Proceedings of SPIE 7742, High Energy, Optical, and Infrared Detectors for Astronomy IV. 77421B. https://doi.org/10.1117/12.856719 7. Nikzad, S., Jones, T. J., Hoenk, M. E., & von Allmen, P. (2023). Solid-state curved focal plane arrays realized with simple approaches for compact and high-performance optical systems. Astronomische Nachrichten, 344(1-2), e20230135. https://doi.org/10.1002/asna.20230135 8. Dumas, D., Fendler, M., Baier, N., & Tatry, P. (2012). Curved focal plane detector array for wide field cameras. Applied Optics, 51(22), 5419–5424. https://doi.org/10.1364/AO.51.005419 9. Smith, K., Johnson, L., & Brown, M. (2018). Impact of detector shape on optical system performance. Optics Letters, 43(15), 3674–3677. 10. Timoshenko, S. P., & Voinovskii-Krieger, S. (1966). Plates and shells. Nauka. [in Russian language]. 11. Muslimov, E. R., Hugot, E., Lombardo, S., & Ferrari, M. (2018). Advanced optical designs of curved detectors-based two-mirrors unobsured telescopes. In L. Mazuray, R. Wartmann, & A. P. Wood (Eds.), Proceedings of SPIE 10690, Optical Design and Engineering VII. 1069025. https://doi.org/10.1117/12.2311885 12. Bezuglyi, A. M., Bakholdin, A. V., & Tochilina, T. V. (2024). Calculation of a curved photosensitive surface of a receiver matched with a normal lens. Izvestiya Vysshikh Uchebnykh Zavedenii. Priborostroenie, 67(6), 511–518. [in Russian language]. https://doi.org/10.17586/0021-3454-2024-67-6-511-518 13. Bezuglyi, A. M., & Bakholdin, A. V. (2025). A method for matching an optical system and a curved receiving surface. Izvestiya Vysshikh Uchebnykh Zavedenii. Priborostroenie, 68(2), 160–167. [in Russian language]. https://doi.org/10.17586/0021-3454-2025-68-2-160-167 14. Gaschet, C., Chambion, B., Gétin, S., & Jahn, W. (2017). Curved sensors for compact high-resolution wide field designs. In A. J. Woods & J. R. Mulley (Eds.), Proceedings of SPIE 10376, Novel Optical Systems Design and Optimization XX. 1037603. https://doi.org/10.1117/12.2272451 15. Joaquina, K., Jahn, W., Struss, Q., & Hugot, E. (2023). Curved CMOS imaging sensor: development and reliability test results. In J. M. O. de Varona & W. R. Balog (Eds.), Proceedings of SPIE 12777, International Conference on Space Optics (ICSO) 2022. 127776S. https://doi.org/10.1117/12.2691354 16. Durini, D. (Ed.). (2014). High performance silicon imaging: Fundamentals and applications of CCD and CMOS image sensors. Elsevier. https://doi.org/10.1016/C2017-0-01564-
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2026.01.pp.058-064
and fill out the form
|